Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing helps physicians zero in on eye disease

16.09.2005


U-M Kellogg Eye Center scientists are first to screen for multiple retinal disease genes on a single microchip — and it’s cost-effective



Rapid genetic testing for eye disease is becoming a reality, thanks to a technology developed at the University of Michigan Kellogg Eye Center. Scientists have created a first-of-its-kind test on a microchip array that will help physicians hone their diagnoses for patients with the blinding disease known as retinitis pigmentosa (RP). The screening technique has proven to be reliable and cost-effective.

In the September issue of Investigative Ophthalmology & Visual Science (IOVS), scientists at the U-M Department of Ophthalmology and Visual Sciences report on the arRP-I sequencing array, the first technology to screen simultaneously for mutations in multiple genes on a single platform.


This is a novel tool for scientists and physicians alike, says lead author and Kellogg scientist Radha Ayyagari, Ph.D. "For diseases that are associated with multiple genes, like RP, we now have a new and faster method for identifying the underlying genetic basis. This is also useful in analyzing complex patterns of inheritance and for understanding how causative genes might interact with each other."

RP is a group of diseases, affecting one in every 3,500 individuals, in which retinal degeneration leads to blindness or severe vision loss.

Among the outward signs and symptoms are loss of peripheral vision, night blindness, and abnormal results from an electroretinogram (ERG), a test that measures the electrical activity and function of the retina. A patient with the autosomal recessive form of the disease (arRP) has inherited one gene from each parent, neither of whom is affected by RP.

It is nearly impossible to identify which form of the disease a patient has through a clinical examination alone, notes John R. Heckenlively, M.D., a specialist in inherited eye disease who also participated in the study.

"Identifying the precise genetic mutation responsible for an individual’s disease will allow us to provide a precise diagnosis, and this knowledge will also allow us to apply genetic therapies as they are developed," he says.

Some clues to treatments are beginning to emerge in animal models, and scientists expect future therapies to be very specific to the type of RP.

"Perhaps one patient will benefit from dramatically limiting exposure to sun or artificial light, and another will use certain vitamins or supplements to stop progression of the disease," says Heckenlively. "Obtaining a molecular diagnosis is going to be very important in helping to guide gene-based treatments for patients in the coming years," he concludes.

Ayyagari’s study involved 70 individuals with a clinical diagnosis of arRP. Thirty-five had not been previously screened, and 35 others with known genetic mutations were screened to validate the results.

The arRP-I chip contained sequences, or genetic codes, of 11 genes that carry approximately 180 mutations associated with early-onset retinal degenerations. To date more than 30 genes have been identified for various forms of RP. Ayyagari notes that while the size of the chip currently limits the ability to array all known RP genes, larger platforms are likely to be available soon.

The arRP-I chips designed by the Kellogg research team produced 97.6 percent of the sequence analyzed with greater than 99 percent accuracy and reproducibility. The material cost of the arRP-I chip was 23 percent less that of current sequencing methods. That figure does not take into account the substantial savings in time and labor realized by analyzing multiple genes at once. These chips can detect both previously known and novel mutations.

Kellogg scientists and physicians expect that genetic technologies will grow dramatically in the next five years, particularly as additional space becomes available in the recently approved expansion to the Eye Center.

A proposed expansion of the U-M’s eye disease genetic testing and counseling center will allow Ayyagari and Heckenlively to screen large numbers of interested patients, provide counseling and education on the implications of genetic testing, and advance the pace of research toward targeted genetic therapies for RP and other inherited eye diseases.

Betsy Nisbet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>