Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making plant cells work like miniature factories

15.09.2005


Ames Laboratory researchers explore the new frontier of metabolomics

The biotech field of genomics gives scientists genetic roadmaps to link certain genes to diseases. The subsequent study of proteins produced by certain genes spawned the field of proteomics.

Now, a group of researchers at the U.S. Department of Energy’s Ames Laboratory at Iowa State University will use $1.02 million in DOE start-up funding to begin understanding the chemical processes that take place within the cells of plants. This new field, called metabolomics, could result in harnessing plants to efficiently produce biomass for energy production, chemicals and materials for industry or pharmaceuticals, and untold thousands of other uses.



“We know a lot about the genetic make-up of many plants, but we know very little about the chemical changes that take place within plant cells that eventually produce sugars, fibers or waxes,” said Ed Yeung, program director of Chemical and Biological Sciences at Ames Lab and principal investigator on the project. “If we can understand metabolism, then ideally, all the materials a plant produces can be controlled.”

The project, “Mass Spectrometric Imaging of Plant Metabolites,” combines the analytical chemistry expertise of Ames Laboratory with the strength of ISU’s Plant Sciences Institute. Yeung, who is also a distinguished professor of chemistry at ISU, is internationally recognized for his work in developing separation and detection technologies, having won four R&D 100 awards.

Also working on the project are Sam Houk, an Ames Lab senior chemist who specializes in identifying trace elements using inductively couple plasma-mass spectrometry, and associate scientist and ISU chemistry professor Ethan Badman, who specializes in mass spectrometry and gas-phase methods of analysis for biological molecules. Rounding out the team is Basil Nikolau, Director of the Plant Sciences Institute’s Center for Designer Crops and a specialist in biochemistry and functional genomics of plant metabolism.

Funding from the Chemical Sciences, Geosciences and Biosciences Division of the DOE’s Office of Basic Energy Sciences provides $340,000 for operation and equipment this year and another $680,000 in 2006. Additional money is expected in 2007 and could continue if the program receives good marks during a peer review scheduled for 2008.
Before they can study the chemical makeup within plant cells, the team must construct new analytical instruments capable of identifying molecules in such minute quantities.

“Developing the instrumentation is a large part of the proposal and we’re building a special, high-resolution mass spectrometer,” Yeung said, “because there’s nothing available commercially that meets our needs.” He added that the equipment will be housed in the Roy J. Carver Co-Laboratory on the ISU campus.

Mass spectrometry works by measuring the mass of individual ions – molecules that have been electrically charged. Plant material is ionized into a gas, sorted in an analyzer chamber according to the mass-to-charge ratios, and collected by an ion detector. The detector converts ion flux into a proportional electrical current. Finally, the magnitude of the electrical signals is recorded and plotted as a mass spectrum.

The ability to sort and detect these ions at cellular-scale quantities is where the team hopes to fine-tune the instrumentation.

Once the equipment is ready, the team will look at the chemical content in the cells of Arabidopsis thaliana, a small flowering plant that is widely used as a model organism in plant biology. Arabidopsis is a member of the mustard (Brassicaceae) family, which includes cultivated species such as cabbage and radish.

“Arabidopsis is not a major crop like corn and soybeans,” Yeung said, “but because so much is already known about it genetically, we can hopefully begin to draw correlations between the chemical and genetic makeup. We hope that such fundamental research will be applicable to other plants as well.”

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov
http://www.ameslab.gov

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>