Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Map Created of Human Protein Interactions

12.09.2005


Who works together with whom? This is the question scientists at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have investigated with regard to human proteins. The answer can be found within a map – the first one in international research – showing 3,186 interactions between 1,705 human proteins. Among them: 531 previously unknown interactions involving 195 disease proteins, highly relevant for medical research.



“We have laid the foundation for a comprehensive connection scheme of the human body. The map helps us understand the functions of proteins and the complex processes in our cells,” explains Professor Erich Wanker, who directed the study.

The work of Professor Wanker and Dr. Ulrich Stelzl, to which scientists from the Max Planck Institute for Molecular Genetics (Berlin) and the German Resource Center for Genome Research GmbH (Heidelberg) contributed, has now been published in the online edition of Cell* (DOI: 10.1016/S0092867405008664). The researchers were able to conduct the project, which is the first extensive human protein network to be published, with the support of the National Genome Research Network (NGFN) – a large scale biomedical program initiated by the German Federal Ministry for Education and Research (BMBF). The NGFN enables scientists to systematically investigate human genes and proteins and their role in health and disease.


With their new map, the MDC scientists hope to better understand the onset of diseases and to discover new molecular targets for therapy. They have identified new protein interactions that can modulate cellular signalling cascades like the Wnt pathway, important in the development of human cancers. “Our interaction map sheds new light on the function and dysfunction of many proteins”, according to Professor Wanker.

The extensive studies on human protein-protein interactions were carried out with a special technology: the automated yeast two-hybrid system (Y2H). In this method, yeast cells are employed to identify the binding partners of proteins. “Interaction studies used to involve laborious manual procedures. Now, a robot system processes thousands of reactions as fast as lightning,” Erich Wanker explains. “We established the robotics unit four years ago and are proud to be the first lab to present a large scale human protein network to the community,“ say Wanker and Stelzl, after testing 25 million protein samples and creating a database that gives full access to the results to fellow scientists.

Barbara Bachtler | alfa
Further information:
http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>