Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make first step towards growing human lungs for transplant

23.08.2005


Scientists have successfully converted human embryonic stem cells into lung cells, taking a first step towards building human lungs for transplantation.



According to research to be published in the journal Tissue Engineering, the team from Imperial College London, took human embryonic stem cells and ’directed’ them to convert into the type of cells needed for gas exchange in the lung, known as mature small airway epithelium.

Dame Professor Julia Polak, from Imperial College London, who led the research team, says: "This is a very exciting development, and could be a huge step towards being able to build human lungs for transplantation or to repair lungs severely damaged by incurable diseases such as cancer."


The research involved taking human embryonic stem cells and growing them in Petri dishes in the laboratory in a specialized system that encouraged them to change into the cells that line the part of the lung where oxygen is absorbed and carbon dioxide excreted. Although this was done in the first instance on embryonic stem cells, the system will be tested further on stem cells from other sources, including umbilical cord blood and bone marrow.

Dr Anne Bishop, from Imperial College London and based at Chelsea and Westminster Hospital, and senior author of the paper, adds: "Although it will be some years before we are able to build actual human lungs for transplantation, this is a major step towards deriving cells that could be used to repair damaged lungs."

Following further laboratory tests, the researchers plan to use their findings to treat problems such as acute respiratory distress syndrome (ARDS), a condition which causes the lining of the cells to fall off, and which currently kills many intensive care patients. By injecting stem cells that will become lung cells, they hope to be able to repopulate the lung lining.

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>