Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Role of microRNA identified in breast cancer

15.08.2005


Scientists mining vast, largely unexplored regions of the human genome have identified a small handful of mini-molecules that play a major role in the development of cancer and perhaps many other diseases.



This newly identified set of molecules is called microRNA (miRNA), a collection of hundreds of snippets of non-coding RNA – typically no more than 22 nucleotides in length – that may comprise a master network controlling genes and protein production throughout the body, according to scientists in Ohio State University’s Comprehensive Cancer Center.

The researchers were the first to define how miRNA malfunctions in some forms of leukemia and lymphoma, and now have discovered how it works in breast cancer. More importantly, they say the miRNA “signature” in breast cancer is directly linked to several biological features that physicians routinely use to diagnose and appropriately treat the disease.


The findings appear in the Aug. 15 issue of Cancer Research.

“MiRNA is opening up a whole new way of understanding carcinogenesis,” says Carlo Croce, professor and chair of the department of molecular virology, immunology and medical genetics at Ohio State and the senior author of the study.

Traditional science holds that a specific stretch of DNA, or gene, encodes a sequence of messenger RNA that in turn creates instructions for the cell to make a particular protein. Cancer arises when there are mutations, deletions or other alterations in that initiating gene.

But what governs the entire process? A growing number of researchers like Croce believe that miRNA may play a major role. In contrast to regular RNA, miRNA does not code for protein production. Instead, it causes the destruction of coding RNA directly, or garbles its translational activity so proper protein production cannot take place.

MiRNA was first discovered almost 15 years ago in studies of roundworms, and since then, it has been found throughout plant and animal genomes. Because it becomes active early on in development and appears to be tissue-specific, researchers believe miRNA plays a fundamental role throughout an organism’s lifespan.

Scientists have identified over 200 distinct miRNAs, but Croce feels there may be hundreds more, and adds that researchers are just beginning to understand what they do. “Some of the breast cancer-specific miRNA we identified appear to act like tumor suppressors, and others appear to act like oncogenes, encouraging tumor growth.”

Interestingly, earlier research in Croce’s laboratory revealed that the majority of miRNA genes in humans are located near chromosomal sites that are especially vulnerable to alteration, a finding that leads him to believe that the role of miRNA in cancer is underestimated.

Croce, along with colleagues at Ohio State, Thomas Jefferson University and three cancer centers in Italy, used a microarray containing all known miRNA to examine miRNA activity in 76 breast tumors. They compared the findings to a microarray analysis of 34 samples of normal breast tissue.

They found 29 miRNAs that are significantly deregulated in breast cancer (some were over-expressed and others were under-expressed) and discovered that only five members of that group (identified as miR10b, miR-125b, miR-145, miR-21 and miR-155) were needed to successfully separate normal tissue from cancerous tissue 100 percent of the time.

They also conducted multiple tests designed to reveal any links between the newly identified expression pattern and important clinical features of the breast cancer, such as the type of the cancer - lobular versus ductal, estrogen and progesterone receptor status, lymph node metastasis, vascular invasion, proliferation index, and presence of two genes that can play a role in tumor growth, HER2 and p53.

They found that miRNA expression was correlated with breast tumors’ hormone status as well as its metastatic, invasive and proliferative potential.

“This leaves little doubt that aberrant expression of miRNA is involved in the development of breast cancer,” says Croce, adding that this information and the results of related studies already under way should offer valuable information for physicians as well as for researchers designing new treatments.

The National Cancer Institute and a Kimmel Scholar Award supported the study, as well as grants from the Associazione Italiana per la Ricerca and Cancro; Ministero dell’Istruzione, dell’Universita e della Ricera Programma Post-genoma; Ministero della Salute Italiano; and Progetto CAN2005-Comitato dei Sostenitori.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>