Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drawing with DNA: ’Bioart’ illuminates genomics

21.07.2005


On any given day, tens of thousands of biologists around the globe run DNA sequences of unknown function through a lightning-fast online algorithm called BLAST – typically submitting 200 to 400 base pairs, or "letters" of genetic code, to be matched against the billions of letters for known genes. Searching for similarities that can shed light on functional or evolutionary relationships, scientists routinely use BLAST to churn through and produce vast amounts of data. Everyday applications include genetic medicine and pharmaceuticals. Yet this process and, more generally, genomics remain dimly understood by the public.


"Ecce Homology" custom software turns incomprehensibly long strings of genetic code into luminous, scientifically accurate visualizations that resemble calligraphy. Shown here, the DNA sequence which codes for human amylase, alpha 1A, salivary and its pictogram. Courtesy Ruth West



"Ecce Homology," an interactive "bioart" installation to be showcased at SIGGRAPH 2005 – in Los Angeles, July 31 through Aug. 4 – quite literally makes BLAST and genomics visible.

Headed up by new-media artist Ruth West – director of visual analytics and interactive technologies at the University of California, San Diego National Center for Microscopy and Imaging Research and research associate with the UCSD Center for Research and Computing in the Arts – the "Ecce Homology" project is an ongoing collaboration among 11 biologists, artists and computer scientists from UCSD, UCLA and the University of Southern California.


Named after Friedrich Nietzsche’s Ecce Homo, a meditation on how one becomes what one is, the project explores human evolution by examining similarities – a.k.a. "homology" – between genes from human beings and a target organism, in this case the rice plant.

"We are living in a time when we are generating enormous amounts of genetic data," said West, who trained as a microbiologist and began her career in medical genetics. "But data is not knowledge – it’s not even information. A key concept of ’Ecce Homology’ is to make an important subject like genomics accessible to the general public."

"Ecce Homology" uses a combination of dynamic media, computer vision and computer graphics to visualize genomic data.

Custom software turns genes – incomprehensibly long strings of As, Cs, Ts and Gs – into luminous pictograms that resemble Chinese or Sanskrit calligraphy. Based on currently available biophysical information, the pictograms are scientifically accurate representations of proteins encoded for by the genes.

In the SIGGRAPH installation, the representations are rendered in a 40-foot wide and 12-foot tall space by five video projectors, with the figures for human genes/proteins shown along a vertical axis and for the rice along a horizontal.

A whole-body computer vision interface tracks the movements of visitors and allows them to interact with the installation. By moving their bodies slowly within the space, visitors can draw shimmering light-filled traces. When a trace sufficiently matches a pictogram in the human dataset, it triggers a real-time bioinformatics comparison: BLAST begins to run, searching through the rice data for a homologue – conducting in a novel (and visible) way the same sequence analysis done by scientists. Results are presented as two superimposed pictograms.

"This high-dimensional visualization reduces the complexity of sequence codes to the sorts of shapes or patterns that a human being can make sense of," West said. "It is an artistic approach to extracting what’s important. And it is also an exploration of what art might have to offer for discovery in the sciences."

"Ecce Homology" premiered in 2003 at the UCLA Fowler Museum of Cultural History.

At SIGGRAPH 2005, "Ecce Homology" is being showcased as part of the international conference’s Art Gallery and its Emerging Technologies program. It will also be featured in the August 2005 issue of Leonardo, an art, science and technology journal from MIT Press.

Inga Kiderra | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.insilicov1.org/
http://www.siggraph.org/s2005/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>