Bacterial cooperation as a target for anti-infectious therapy

Resistance to antibiotics is spreading dangerously among bacteria, some of them being resistant to all known medicine. To face this challenge, a radically novel line of attack consists in disorganizing infections, instead of killing individual bacteria. Just like the coordinated activity of our cells is the basis of the proper functioning of our body, the coordinated activity of bacteria is often the basis of infections’ efficiency, and certain drugs have been shown experimentally to impede this coordination.

In a paper recently published in Ecology Letters, André and Godelle build a mathematical model showing that one of the most interesting advantages of these drugs is that the evolution of bacterial resistance would be orders of magnitude slower than in the case of antibiotics.

The authors suggest an interesting interpretation. When a drug targets global properties of infections, the units of organization potentially resisting that drug are precisely the infections, and not the bacteria. In consequence, instead of facing billions of microscopic individuals the drug is only facing a reduced number of larger organisms (infections) with slower evolutionary rate.

Media Contact

Lynne Miller alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors