Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole genome promoter mapping - Human Genome Project v2.0?

30.06.2005


Study marks first step in decoding gene regulatory logic



Investigators from the University California, San Diego (UCSD) Branch of the Ludwig Institute for Cancer Research (LICR) and NimbleGen Systems have developed an efficient method to identify thousands of regulatory sequences in the human genome, according to a study published today in Nature.

Genes are defined by their ability to generate a functional product. Thus the ’promoter’ - a DNA sequence that controls when and where a gene product is generated - is the critical element that distinguishes a gene from ’junk DNA.’ Using a set of NimbleGen’s DNA microarrays that represent the entire human genome, the team was able to track critical proteins binding to each gene’s promoter to identify 10,567 active promoters, 6 091 of which were previously unknown.


LICR’s Dr. Bing Ren, the senior author of the study and a faculty member at the UCSD School of Medicine, says that although scientists have found most of the protein-coding genes in the human genome, their control sequences have been elusive until now. "Promoters are a type of genetic switch that turn gene expression on or off. If we know where the promoters are, we can study how the genetic switches work in a cell, and investigate their connection to human diseases," said Dr. Ren, who is also a member of the Rebecca and John Moores UCSD Cancer Center. He and his colleagues have made the data freely available on online public databases.

Dr. Robert Strausberg, Vice-President of Human Genomic Medicine at the J. Craig Venter Institute, says that this understanding is vital for determining the genetic causes of, and possible genomic solutions for, diseases such as cancer. "Medicine is increasingly turning towards the idea of using genetic markers for diagnosis and prognosis, or determining personalized therapies, so-called pharmacogenetics, but we don’t know how these genes are regulated or even related to each other. The identification of such a large number of promoters means that we can begin to answer these sorts of questions."

Sarah L. White, Ph.D. | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>