Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Vicious cycle’ of protein formation involved in Parkinson’s disease

22.06.2005


Researchers at UT Southwestern Medical Center have discovered a mechanism that causes a protein to clump together in brain cells of people with Parkinson’s disease, pointing toward a possible treatment for the condition.



The protein clumping is part of a "vicious cycle," the researchers said. As the proteins cluster, they inhibit an enzyme that normally breaks them down, leading to the formation of even more masses.

"It’s a disease involving accumulation of a protein in an aberrant form," said Dr. Philip Thomas, professor of physiology at UT Southwestern and senior author of the study. The research, available online, was published in the June 17 issue of The Journal of Biological Chemistry.


The findings have parallels to other diseases in which protein clusters form in and around nerves, such as Huntington’s and Alzheimer’s disease.

The culprit in Parkinson’s is the protein alpha-synuclein, which normally appears in a long, folded form in cells. It’s known to be linked to the disease because mutations in it cause rare, inherited cases of early-onset Parkinson’s.

Normally, if a cell becomes stressed, alpha-synuclein unfolds, and an enzyme degrades it completely into harmless bits to prevent the clumping. In Parkinson’s patients, however, some of the degrading enzyme malfunctions and creates truncated fragments of alpha-synuclein rather than the harmless bits.

UT Southwestern researchers found that these truncated fragments act like "seeds," encouraging the unfolded form of alpha-synuclein to gather around them. It doesn’t take much – just a few molecules of the truncated fragments – to activate this process. Eventually, the cluster is big enough to form a structure called a fibril.

The two forms of the enzyme are usually in balance, with the normal activity outperforming the malicious activity, Dr. Thomas said.

But when the system goes out of balance, the fibrils suppress the normally functioning enzyme, preventing it from fully breaking down the unfolded alpha-synuclein, resulting in even more of the protein being available to form clumps. The clumps also alter the structure of the enzyme in such a way that it produces even more seed fragments. This leads to the formation of more clumps, and so on.

Scientists are still debating which form of the alpha-synuclein protein actually damages the cells, said Dr. Chang-Wei Liu, research fellow in physiology at UT Southwestern and lead author of the study. It could be the mature fibril, or one of the intermediate forms that appears during the degradation process, he said.

Future research may involve uncovering methods to inhibit just the malicious form of the enzyme, while leaving the functions of the normal enzyme unaffected, Dr. Thomas said. Inhibiting only one form is vital, because the normal enzyme is necessary for cells to survive.

Still, the finding reported in The Journal of Biological Chemistry "gives us clues about potential new treatment avenues," he said.

Other UT Southwestern authors of the study are Karen Lewis, student research assistant in physiology, and Dr. George DeMartino, professor of physiology. Researchers at the University of Pennsylvania School of Medicine also contributed.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>