Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists streamline method for making key virus

14.06.2005


By devising a novel way to package the genome of a common human tumor virus -- the virus that causes common warts, genital warts and that is implicated in prevalent cancers -- scientists have paved the way for making the pathogen far more accessible to biomedical science.



The work, reported today (June 13) in the online edition of the Proceedings of the National Academy of Science (PNAS), promises to accelerate the search for an effective cancer vaccine and treatments for cervical, head, neck and some skin cancers.

The new study on human papillomavirus by a team of scientists from the Howard Hughes Medical Institute, the Institute for Molecular Virology and the McArdle Laboratory for Cancer Research at the University of Wisconsin-Madison, describes a method for making large quantities of the virus in the lab.


The feat could help scientists overcome long-standing hurdles to understanding the basic biology of a major human pathogen: how the virus replicates, infects host cells and evades the immune system. It also promises to speed development of therapeutic drugs and new vaccines, including live, attenuated vaccines, according to Dohun Pyeon, the lead author of the report.

"This new approach offers dramatic advantages," says Paul Ahlquist, a UW-Madison virologist and the senior author of the PNAS paper. "It increases virus yield over a thousand fold, speeds production ten-fold, and lets us make and test virus mutants that weren’t possible before."

Papillomavirus can be transmitted non-sexually, but is also one of the most common sexually transmitted diseases in humans, with more than 5 million new infections reported each year in the United States alone. It is perhaps best known as the cause of genital warts, although some forms of the more than 100 subtypes of the virus are known to cause cervical cancer, and cancers of the head, neck and skin.

In nature, the virus lurks in skin cells, where it uses a "stealth strategy" to evade the immune system. It hides, initially, in undifferentiated skin cells, the only type of cell that can be infected by the virus. When the undifferentiated cells begin to develop into mature skin cells, the virus switches gears, acquires a protein coat for its DNA, and begins to churn out particles to infect other undifferentiated cells.

"The human papillomavirus life cycle is unique," says Ahlquist. "It is closely linked to skin cell differentiation. In the basal cells, the virus just sits there quietly. Once differentiation occurs, a whole new program kicks in."

The virus’s use of the skin cell differentiation process to jump start infection was an obstacle in the lab, says Pyeon, and prevented scientists from making large quantities of the virus for research. Established methods were cumbersome, labor and time intensive, and yielded only small amounts of infectious particles.

Obtaining useful amounts of the virus have greatly limited studies on many aspects of papillomavirus biology, says Ahlquist, who conducted the new work with Wisconsin colleagues Pyeon and Paul F. Lambert.

The team devised a way to encapsulate the complete genome of the virus in a protein coat by adding the key components of the virus -- its DNA and the protein molecules that make the virus capsid or coat -- to a culture of undifferentiated skin cells.

"When the capsid protein is in the cell, it will assemble the capsid" around the genome of the virus, says Pyeon. "This takes just two days."

The advantages of the new system, in addition to greatly increasing the volume of infectious virus particles and the speed with which they can be assembled, is that is can be used to culture any of the 100 or so subtypes of the papillomavirus as well as genetic mutants created in the lab.

"There is absolutely no problem in packaging the virus, and we can make any mutant virus we want with this technique," Pyeon explains.

The ability to make large quantities of the virus and genetically manipulate it means that scientists can bring to bear the many tools at their disposal to unravel the biological mysteries of a clinically intractable pathogen, says Ahlquist.

"This system provides major benefits for studying the virus in the early phases of its life cycle," he says.

Moreover, the technique can provide enough of the virus to begin to experiment with and develop live, attenuated vaccines. At present, there are two human papillomavirus vaccines in trials, but they depend only on the empty protein coat of the virus to prompt a limited immune response.

"There is good reason to believe that those vaccines will be very valuable," says Ahlquist. "Nevertheless, this new approach offers important opportunities to activate a larger set of immune responses against a larger set of viral gene products -- responses that could be crucial if you want to attack the reservoir of the virus."

In addition, the ability to culture large amounts of the virus means that high-volume drug screens can be developed to speed the search for drugs that can treat human papillomavirus infections. The cultured virus also can be used to test vaccines now in development, and genetically manipulated viruses could potentially be used as gene therapy vectors to ferry introduced genes to diseased cells.

Paul Ahlquist | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>