Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create infectious hepatitis C virus in a test tube

10.06.2005


Method enables scientists to study all stages of virus’ life cycle

A team of researchers led by scientists at The Rockefeller University has produced for the first time an infectious form of the hepatitis C virus (HCV) in laboratory cultures of human cells. The finding, reported in the June 9 issue of Science Express, will allow scientists to study every stage of the HCV life cycle and develop drugs to treat this life-threatening disease that affects more than 170 million people around the world. "The inability to reproduce aspects of the hepatitis C virus life cycle in cell culture has slowed research progress on this important human pathogen," says senior author Charles M. Rice, Ph.D., Maurice R. and Corinne P. Greenberg Professor and head of the Laboratory of Virology and Infectious Disease at Rockefeller.

"This system lays the foundation for future test tube studies of the virus life cycle and may help in the development of new drugs for combating HCV," adds Rice, who is the scientific director of the Center for the Study of Hepatitis C, a collaborative research and clinical effort of Rockefeller, Weill Medical College of Cornell University, and New York- Presbyterian Hospital



Like all viruses, HCV cannot replicate by itself; instead it takes over the machinery of a host cell to make copies of itself. Much about the life cycle of HCV remains poorly understood because scientists have been unable to reproduce an infectious form of HCV that they can observe in cell cultures. The method developed by Rice and his colleagues, including scientists at the Massachusetts Institute of Technology and the Scripps Research Institute, changes that. "The hallmark of viruses is their ability to exist in a form outside the host cell capable of infecting new cells," says first author Brett Lindenbach, Ph.D., a postdoctoral fellow in Rice’s lab. "Our method replicates and produces virus particles that can infect new cells, initiating replication in them and leading to the production of more virus particles."

Although little is know about the HCV life cycle, researchers think that in humans the virus enters a liver cell and delivers its RNA and proteins into the cell cytoplasm. HCV carries its genetic information in its RNA, which is separated from the protein, copied, and then joined with new protein components before being released from the liver cell to infect other cells. Lindenbach, Rice and their colleagues named their infectious cell culture virus HCVcc. Already HCVcc is yielding new knowledge about HCV. In a separate set of experiments, the researchers used HCVcc to confirm that a molecule called CD81, which sits on the surface of the human cell membrane, plays a crucial role in the entry of HCV.

Scientists have known that a protein produced by HCV, called E2, binds to CD81, and they believed that this interaction is necessary for the virus to bind to target cells. The Rockefeller researchers showed that CD81 molecules that are not attached to the surface of host cells compete with membrane-bound CD81 and inhibit entry of HCV into the cell. They also showed that HepG2 cells, which do not express CD81 but can support HCV RNA replication, could not be infected by HCVcc unless they express CD81.

Liver failure due to hepatitis C is the leading cause of liver transplants in the United States, and about 25 percent of liver cancer cases in the country are associated with HCV. Although about 85 percent of those who are infected develop chronic infection, the virus usually remains undetected for years, or even decades, until it causes advanced liver disease.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>