Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create infectious hepatitis C virus in a test tube

10.06.2005


Method enables scientists to study all stages of virus’ life cycle

A team of researchers led by scientists at The Rockefeller University has produced for the first time an infectious form of the hepatitis C virus (HCV) in laboratory cultures of human cells. The finding, reported in the June 9 issue of Science Express, will allow scientists to study every stage of the HCV life cycle and develop drugs to treat this life-threatening disease that affects more than 170 million people around the world. "The inability to reproduce aspects of the hepatitis C virus life cycle in cell culture has slowed research progress on this important human pathogen," says senior author Charles M. Rice, Ph.D., Maurice R. and Corinne P. Greenberg Professor and head of the Laboratory of Virology and Infectious Disease at Rockefeller.

"This system lays the foundation for future test tube studies of the virus life cycle and may help in the development of new drugs for combating HCV," adds Rice, who is the scientific director of the Center for the Study of Hepatitis C, a collaborative research and clinical effort of Rockefeller, Weill Medical College of Cornell University, and New York- Presbyterian Hospital



Like all viruses, HCV cannot replicate by itself; instead it takes over the machinery of a host cell to make copies of itself. Much about the life cycle of HCV remains poorly understood because scientists have been unable to reproduce an infectious form of HCV that they can observe in cell cultures. The method developed by Rice and his colleagues, including scientists at the Massachusetts Institute of Technology and the Scripps Research Institute, changes that. "The hallmark of viruses is their ability to exist in a form outside the host cell capable of infecting new cells," says first author Brett Lindenbach, Ph.D., a postdoctoral fellow in Rice’s lab. "Our method replicates and produces virus particles that can infect new cells, initiating replication in them and leading to the production of more virus particles."

Although little is know about the HCV life cycle, researchers think that in humans the virus enters a liver cell and delivers its RNA and proteins into the cell cytoplasm. HCV carries its genetic information in its RNA, which is separated from the protein, copied, and then joined with new protein components before being released from the liver cell to infect other cells. Lindenbach, Rice and their colleagues named their infectious cell culture virus HCVcc. Already HCVcc is yielding new knowledge about HCV. In a separate set of experiments, the researchers used HCVcc to confirm that a molecule called CD81, which sits on the surface of the human cell membrane, plays a crucial role in the entry of HCV.

Scientists have known that a protein produced by HCV, called E2, binds to CD81, and they believed that this interaction is necessary for the virus to bind to target cells. The Rockefeller researchers showed that CD81 molecules that are not attached to the surface of host cells compete with membrane-bound CD81 and inhibit entry of HCV into the cell. They also showed that HepG2 cells, which do not express CD81 but can support HCV RNA replication, could not be infected by HCVcc unless they express CD81.

Liver failure due to hepatitis C is the leading cause of liver transplants in the United States, and about 25 percent of liver cancer cases in the country are associated with HCV. Although about 85 percent of those who are infected develop chronic infection, the virus usually remains undetected for years, or even decades, until it causes advanced liver disease.

Joseph Bonner | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>