Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mosquito study shows new, faster way West Nile can spread

07.06.2005


Researchers at the University of Texas Medical Branch at Galveston (UTMB) have discovered a quick new way that mosquitoes can pass West Nile virus to each other. The new study challenges fundamental assumptions about the virus’ transmission cycle and may help explain why it spread so rapidly across North America despite experts’ predictions that it would progress more slowly or even die out. In the conventional understanding of West Nile transmission, mosquitoes acquire the virus when they bite birds with high levels of virus (or "high viremia.") in their blood. Those levels are reached several days after the birds are initially infected by other mosquitoes. But experiments at UTMB show that when infected and uninfected mosquitoes feed simultaneously on previously uninfected laboratory mice, the virus can pass from mosquito to mosquito within an hour.



"We were amazed to see that it could happen," said UTMB associate professor Stephen Higgs, lead author of a paper on the discovery that will be published online in the Proceedings of the National Academy of Sciences the week of June 6. "It is basically a brand-new component of the virus’ life cycle."

In the paper, Higgs and his co-authors--UTMB graduate student Bradley S. Schneider, senior research associate Dana Vanlandingham, research assistant Kimberly A. Klingler and Ernest A. Gould of the United Kingdom’s Centre for Ecology and Hydrology--note that although such "non-viremic transmission" (that is, transmission before virus can be detected in the blood) has been observed in cases involving viruses transmitted by ticks, it has never before been documented in a virus carried by mosquitoes.


To determine whether West Nile virus could be transmitted non-viremically, the researchers placed an anesthetized, uninfected lab mouse on a mesh-topped container holding infected "donor" mosquitoes, which fed on the mouse through the mesh. Five minutes later, they moved a second mesh-topped container in position so that its uninfected "recipient" mosquitoes could feed on the same mouse, allowing the simultaneous feeding by infected and uninfected mosquitoes to continue for an hour. In repeated experiments, tests revealed that between 2 and 6 percent of the recipient mosquitoes acquired the virus. In one trial, a single bite from a donor mosquito was sufficient to infect two out of 87 recipient mosquitoes.

The discovery calls into question the current conception of mosquito transmission of West Nile virus and possibly other viruses such as the one that causes dengue fever. According to that theory, many vertebrates were considered to be "dead-end hosts" that did not pass along the virus. Only birds, which develop much higher levels of the West Nile virus in their blood, were thought capable of passing it on to uninfected mosquitoes.

"None of the models that have attempted to predict the spread of West Nile virus take into account the possibility that mammals such as horses may be involved in the proliferation of this virus. Direct transfer of virus from the infected mosquitoes that initially feed on them to others that feed on them afterwards, could significantly accelerate the spread of the disease," Higgs said. "Instead of only birds infecting mosquitoes, all sorts of animals may be involved, and transmission could be happening much faster because you don’t have to wait for a high viremia."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>