Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research raises questions about buckyballs and the environment

10.05.2005


In a challenge to conventional wisdom, scientists have found that buckyballs dissolve in water and could have a negative impact on soil bacteria. The findings raise new questions about how the nanoparticles might behave in the environment and how they should be regulated, according to a report scheduled to appear in the June 1 print issue of the American Chemical Society’s peer-reviewed journal Environmental Science & Technology. ACS is the world’s largest scientific society.



A buckyball is a soccer ball-shaped molecule made up of 60 carbon atoms. Also known as fullerenes, buckyballs have recently been touted for their potential applications in everything from drug delivery to energy transmission. Yet even as industrial-scale production of buckyballs approaches reality, little is known about how these nano-scale particles will impact the natural environment. Recent studies have shown that buckyballs in low concentrations can affect biological systems such as human skin cells, but the new study is among the earliest to assess how buckyballs might behave when they come in contact with water in nature.

Scientists have generally assumed that buckyballs will not dissolve in water, and therefore pose no imminent threat to most natural systems. "We haven’t really thought of water as a vector for the movement of these types of materials," says Joseph Hughes, Ph.D., an environmental engineer at Georgia Tech and lead author of the study.


But Hughes and his collaborators at Rice University in Texas have found that buckyballs combine into unusual nano-sized clumps — which they refer to as "nano-C60" — that are about 10 orders of magnitude more soluble in water than the individual carbon molecules.

In this new experiment, they exposed nano-C60 to two types of common soil bacteria and found that the particles inhibited both the growth and respiration of the bacteria at very low concentrations — as little as 0.5 parts per million. "What we have found is that these C60 aggregates are pretty good antibacterial materials," Hughes says. "It may be possible to harness that for tremendously good applications, but it could also have impacts on ecosystem health."

Scientists simply don’t know enough to accurately predict what impact buckyballs will have on the environment or in living systems, which is exactly why research of this type needs to be done in the early stages of development, Hughes says.

He suggests that his findings clearly illustrate the limitations of current guidelines for the handling and disposal of buckyballs, which are still based on the properties of bulk carbon black. "No one thinks that graphite and diamond are the same thing," Hughes says. They’re both bulk carbon, but they are handled in completely different ways. The same should be true for buckyballs, according to Hughes.

These particles are designed to have unique surface chemistries, and they exhibit unusual properties because they are at the nanometer scale — one billionth of a meter, the range where molecular interactions and quantum effects take place. It is precisely these characteristics that make them both so potentially useful and hazardous to biological systems. "I think we should expect them to behave differently than our current materials, which have been studied based on natural bulk forms," Hughes says. "Learning that C60 behaves differently than graphite should be no surprise."

Overall, the toxicological studies that have been reported in recent years are a signal that the biological response to these materials needs to be considered. "That doesn’t mean that we put a halt on nanotechnology," Hughes says. "Quite the opposite."

"As information becomes available, we have to be ready to modify these regulations and best practices for safety," he continues. "If we’re doing complementary studies that help to support this line of new materials and integrate those into human safety regulations, then the industry is going to be better off and the environment is going to be better off."

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with an interdisciplinary membership of more than 158,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>