Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano or not?

03.05.2005


Hohenstein quality label provides guidance

Probably no other catchword has had such an impact on professional textile circles or been included in the advertising messages of manufacturers as frequently over recent months as the term nanotechnology. As there is no uniform definition of the term as yet and there is no distinction between this and conventional textile finishing, insecurity amongst retailers and consumers has increased as the number of advertised active principles and products of this type has risen.

The Hohenstein Institutes, in conjunction with NanoMat, a network of various research institutes and leading suppliers of nanomaterials, have now found a definition which can be applied to the textile sector. The Hohenstein quality label, which is already established in the area of wear comfort, will also soon provide security for retailers and consumers relating to the question "Nano or not?"



Under the definition of the term nanotechnology according to NanoMat the fact that the majority of applications to date simply exist in theoretical form or at best as prototypes is taken into account. Nanotechnology is therefore related back to the area of nanoscience:

Nanotechnology comprises the emerging applications of Nanoscience. Nanosience is dealing with functional systems based on the use of sub-units with specific size-dependent properties of the individual sub-units or of a system of those.

In order for a textile product to be able to use the Hohenstein quality label in the future, it is therefore not sufficient for nanoparticles (1 nanometer = 10-9 m = 0.000001 mm) to be incorporated within the fibre or for the fibres to be enclosed in a nanoscale coating (nanofilm). Rather, the nanoparticles or nanolayers in or on the textile must be systematically arranged and thus demonstrably result in a new function.

Moreover, the nanotechnology should only be perceptible to the wearer by means of a demonstrably improved function, and should only have a negligible effect on the textile properties.

Textile technological parameters which need to be tested in addition to the nanofinish are resistance to care treatments, any effect on health and wear comfort. These parameters can also be neutrally tested by the Hohenstein specialists on request. They are then included separately on the quality label.

What is nano?

The term nano comes from the Greek (=dwarf) and is used in our measuring system as a prefix to denote one billionth. A particle with a diameter of one nanometer is therefore 1 billionth of a meter in size (10-9 m = 0.000001 mm). To give a better illustration: one meter is to one nanometer the equivalent of the diameter of the earth to a hazelnut. Discussions on nanotechnology therefore take us into the realm of molecules which can be made visible nowadays using the latest atomic force microscopy (AFM) or high-resolution scanning electron microscopy (SEM), for example. There is a very wide variety of nanoparticles and they can comprise of different elements and compounds. It is only their particle size which defines them as nanoparticles. Today, available metallic materials (silver, iron, palladium, platinum), organic compounds (vitamins, DNA, coloured pigments) and inorganic compounds (titanium dioxide, zinc oxide, iron oxide) and organic polymers (block copolymers, dispersions) are used.

What is nanotechnology?

Nanotechnology comprises the emerging applications of Nanoscience. Nanosience is dealing with functional systems based on the use of sub-units with specific size-dependent properties of the individual sub-units or of a system of those.

Contact:
Hohenstein Institutes
Competence Centre for Intelligent Textiles
Dr. Jan Beringer
Schloss Hohenstein
D-74357 Bönnigheim
Tel.: 07143 / 271 641
E-mail: j.beringer@hohenstein.de

Rose-Marie Riedl | idw
Further information:
http://www.hohenstein.de

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>