Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal cell division explained

28.04.2005


Why do some cancer cells divide not into two, as cells are supposed to do in mitosis, but into three-four new cells that look thoroughly abnormal? This question was raised as early as the 1890s by the German tumor researcher David Hansemann, who could observe the strange mitosis even using the microscopes of his day. Now another David, Lund University researcher David Gisselsson, has found an answer.



Together with associates from the Section for Clinical Genetics, David Gisselsson has long been studying chromosome changes in various sorts of cancer cells. Contrary to the earlier belief that tumor cells are rather stable genetically, a few years ago he was able to show that genetic chaos prevails in certain severe cancer forms.

"The normal number of chromosomes in a human cell is 46. But in tumors from skeletal and pancreatic cancer, some cells can have far fewer than 46 chromosomes while others have several hundred. The structure of these chromosomes is also often abnormal-­for example, they have lost some parts, traded segments with each other, and copied certain genes in mass production," says David Gisselsson.


The Lund scientists have scrutinized these phenomena in a series of studies. They have been able to demonstrate that certain tumor cells get stuck in mitosis, so that their chromosomes do not divide neatly in two directions, but rather get pulled apart in a disorganized manner into the daughter cells. This is because the ends of the chromosomes, the so-called telomers, have lost their protective exteriors.

Cells with truncated, unprotected telomers from different chromosomes actually ought to simply die, but this does not happen in these tumor cells. Instead, the naked telomers cling to each other. This can be the explanation for the abnormal number of chromosomes in some tumor cells, where certain ones have incorporated a number of extra chromosomes while others wind up with too few.

Having the wrong number of chromosomes does not lead directly to death in these tumor cells. On the other hand, they have problems with mitosis.

"We have observed that these cells sometimes try to divide, but they fail and go into an idle state. If they then try again, they tend to divide in three or four directions. This explains Hansemann’s discovery from the 1890s!" says David Gisselsson.

In its latest study the Lund team has also shown that the daughter cells of those cells which divide in more than two directions have a completely random distribution of chromosomes. This genetic chaos is so great that the cells usually die.

Research groups in several countries have been studying von Hansemann mitosis at the molecular level, that is, what happens inside the cell. But this work has proven to have little relevance to the struggle against cancer. These are not the cells that make a tumor grow, since they themselves typically die off.

On the other hand, the Lund team now wishes to study substances that might be able to counteract cancer by further damaging already truncated telomers. In that way it may be possible to increase the genetic chaos in tumor cells in order to get more of them to simply die.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>