Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poplar Trees Redirect Resources in Response to Simulated Attack

30.03.2005


Use of “functional imaging” to track plant nutrients has many potential applications



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have applied some of the same techniques used in medical imaging to track the distribution of nutrients in poplar trees in response to a simulated insect attack. The research provides new insights on a long-debated theory about how plants respond to environmental stress, and shows that radiotracer imaging can be a big help in unraveling plant biochemistry.

Richard Ferrieri (L) and co-author Dennis Gray, now with the University of Connecticut, position a plant leaf in one of BNL’s positron emission tomography (PET) scanners. Their research using radiotracers like those used in human PET scanning is helping to unravel the mysteries of plant biochemistry. (Click image to download hi-res version.)
Done in collaboration with scientists from Tufts University and Stony Brook University, the research is reported in two articles, to be published in Plant, Cell & Environment (June 2005) and in New Phytologist (August 2005), both now available online.



“Just as we’ve learned to use radiotracers to image the inner workings of the living human brain, we can now track biochemical and physiological processes within plants using these powerful imaging tools,” said Richard Ferrieri, who leads Brookhaven’s role in the research. “This enables us to study the effects of external factors like insect attacks, disease, elevated carbon dioxide, soil toxins, and drought on vital plant processes.”

Ferrieri says scientists trying to improve plants’ resistance to environmental challenges — or their ability to perform useful tasks such as carbon sequestration, phytoremediation, or the production of bio-fuels — could also use functional imaging to help track their progress.

In the New Phytologist study, the scientists asked how plants deal with an external stress, such as an insect attack. “We know that plants respond defensively to attacks, for example, by producing chemicals that kill off the attackers or make their own leaves less tasty,” said Benjamin Babst, a Ph.D. student in the biology department at Tufts University and lead author on that paper. “But there’s a suspicion that plants also respond by building up tolerance, for example by putting aside more carbon into storage so it will be available to help the plant spring back to life once the attack has passed. Using the techniques developed at Brookhaven, we now have a way to find out.”

To simulate an insect attack, the scientists painted a solution of jasmonic acid, a chemical messenger that plants produce in response to various types of stress, onto the leaves of poplar trees in a closed chamber. They then administered carbon dioxide gas “labeled” with radioactive carbon-11 to individual leaves, where it is quickly converted to sugar, and traced the movement of this radiolabeled sugar through the plants using autoradiography and other techniques. Autoradiography allows for taking a snapshot in time showing the precise location of the radiotracer within the plant. With this and other techniques, the scientists can compare what that plant does with the carbon dioxide both before and after an attack.

“Carbon dioxide is a plant’s major resource. To see how it is allocated into various biochemical pathways is an incredibly powerful tool for learning how plants cope with stress,” says plant scientist Michael Thorpe who is helping to build the plant-imaging program at Brookhaven.

Plants subjected to the jasmonic acid “attack” produced more radiolabeled sugar and delivered more of it to the roots than plants untreated with the hormone. “This is pretty convincing evidence that plants can respond ‘passively’ by redirecting their nutrients away from the site of attack and placing them into storage for later regrowth,” Ferrieri said.

Supporting evidence comes from the amount of carbon-11 the scientists detected in isoprene, a hydrocarbon gas that is a byproduct of sugar synthesis in the leaves. That research, reported in Plant, Cell & Environment, shows that, in response to jasmonic acid “attack,” the plants diverted more newly acquired carbon into isoprene production. “Scientists are only just beginning to realize that isoprene has a vital role as an antioxidant in helping plants tolerate many different stresses, for example from insects or ozone,” Ferrieri said.

The scientists have not yet determined if more sugar gets stored in the plants’ roots, a key component of the theory. “Because the radiotracer has such a short half-life (20.4 minutes), we can see that more is going to the roots, but not the chemical form it takes there,” Ferrieri said. “We will have to do more tests to see what compounds are formed.”

Ferrieri believes there may be an increase in compounds that resist microbial attack after plants have soaked up atmospheric carbon dioxide, therefore countering the effects of fossil-fuel combustion. This is a strategy of carbon sequestration — the provision of long-term storage of carbon so that the buildup of carbon dioxide in the atmosphere will be reduced.

The research was funded by Brookhaven’s Laboratory Directed Research and Development (LDRD) program with support from the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=05-30

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>