Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research network: Artificial photosynthesis for future energy production

22.02.2005


Nature utilizes energy from the sun for its production. Some algae produce hydrogen from water with the help of solar energy. So why not imitate nature to extract renewable energy without harming the environment? The EU is now giving European research a boost by allocating €1.8 million to a new network to be led by Uppsala University.



Plant photosynthesis has long been studied with an eye to understanding its underlying mechanisms and then applying this knowledge to the production of energy for the needs of society. Today, hydrogen is regarded as one of the most promising forms of fuel for the future. A new European network, SOLAR-H, has now been established to bring together research competence from different fields. “The network consists of laboratories that lead the world in a broad spectrum of fields from molecular biology, biochemistry, and synthetic chemistry to physical chemistry,” says Professor Stenbjörn Styring at the Section for Biomimetics at Uppsala University.

He recently moved to Uppsala from Lund University, together with his research team, and he will now be coordinating the new network, which was initiated in Sweden and the Consortium for Artificial Photosynthesis. With the move to Uppsala the Consortium will now be able to gather most of its research at one university, having previously been split up at three different ones. Uppsala already had Leif Hammarström’s team in chemical physics and Peter Lindblad’s group in physiological botany. A further team has now been assembled around synthetic chemists that recently came to Uppsala from Stockholm University in connection with Styring’s move.


“We now have about 40 individuals gathered at Uppsala and are full of enthusiasm about the future,” he adds.

With its breadth, the Uppsala team will be able to apply many different approaches simultaneously. Lindblad’s team is studying living cyanobacteria (a kind of alga) and is altering their metabolism at the genetic level so they produce hydrogen without absorbing it at the same time. Styring heads a team that is studying the mechanisms of natural photosynthesis at the biochemical level, while a third team led by a group of young scientists are busy synthesizing the molecule complexes necessary to imitate the natural process. In Leif Hammarström’s team the rapid and complex reactions can be studied using a series of different physical methods of measurement. “We think artificial photosynthesis has tremendous potential, even though it remains to be demonstrated. It’s a scientific challenge, and if we succeed, the market will be gigantic.”

Other laboratories in SOLAR-H are in France, Germany, Hungary, the Netherlands, and Switzerland. Read more at:

FACTS: Framework Programs are the primary source of support for elite research and technological development in the EU. The overall budget amounts to €19 billion and is being used to fund projects throughout the EU during the period 2002-2006.

For more information please contact Stenbjörn Styring at phone: +46 18-471 6580, cell phone: +46 70-572 2364, or e-mail stenbjorn.styring@fki.uu.se.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>