Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling protein builds bigger, better bones in mice

22.02.2005


Also protects against bone loss from aging or lack of estrogen



Leaping tall buildings in a single bound may be out of the question, but the genetically engineered "supermice" in Ormond MacDougald’s laboratory at the University of Michigan Medical School are definitely stronger than average. With bone mass up to four times greater than ordinary mice, these research animals could hold the secret to new drugs for preventing or treating osteoporosis and other human diseases.

The secret appears to be a secreted signaling protein called Wnt10b. Known to inhibit the development of adipose tissue in mice, Wnt10b also stimulates the growth of bone cells, according to a new study that will be published February 21 in the Online Early Edition of the Proceedings of the National Academy of Sciences. "High levels of Wnt10b expression in bone marrow directly increased bone mass and density in our experimental mice," says Ormond A. MacDougald, Ph.D., associate professor of molecular and integrative physiology in the U-M Medical School. "This is the first identification of a specific signaling protein in the Wnt family that regulates bone formation."


Wnt10b is one of a family of 19 related proteins. Wnts (pronounced "wints") regulate the complex changes that take place as an embryo develops. One step in this process determines the fate of primitive cells called mesenchymal stem cells. "In bone marrow, mesenchymal stem cells have the potential to become either fat cells called adipocytes or bone-forming cells called osteoblasts," MacDougald says. "In adult animals, including humans, there’s a reciprocal relationship between bone and marrow fat. Our research indicates that Wnt10b’s signal blocks the fat cell pathway and stimulates the osteoblast pathway, which means less fat and more bone."

To study the effect of Wnt10b gene expression on tissue development, MacDougald’s research team created an artificial sequence of DNA called a transgene linking Wnt10b to the FABP4 promoter, which is expressed in fatty tissue and in bone marrow. U-M scientists injected the transgene DNA into fertilized mouse eggs, and then bred mice that inherited the new gene to create the transgenic animals used in their research.

Kurt D. Hankenson, D.V.M., Ph.D., a U-M assistant professor of orthopedic surgery and laboratory animal medicine, and Christina N. Bennett, a U-M graduate student and first author of the PNAS paper, used a technology called micro-computerized tomography to scan femur (leg) bones from mice that inherited the FABP4-Wnt10b gene combination and compare them to scans from normal mice.

Bennett and Hankenson discovered that femurs from the transgenic mice had almost four times as much bone, and were mechanically stronger than femurs from control mice. (Note to editors: An image showing the femur scan comparison is available.) "It was a very exciting moment the first time we saw scans showing increased bone mass in transgenic mice," Bennett says. "Visually, we don’t see any abnormal side-effects in bone from the transgenic mice. Its development and morphology appear to be completely normal." Loss of bone often develops with aging, but Wnt10b transgenic mice maintained their high levels of bone mass up to the ripe old age of 23 months, when the study was concluded.

Estrogen deficiency in females is another common cause of bone loss. When U-M scientists removed ovaries from normal mice in the study, they developed reduced bone mineral density and bone volume. But the Wnt10b females showed no bone loss after their ovaries were removed. "Because the transgenic mice have more trabecular bone, or bone within the marrow cavity, to begin with, they are doubly protected from the usual loss of bone density due to estrogen deficiency," MacDougald adds.

To confirm that Wnt10b was the key to increased bone formation, Bennett and Hankenson scanned bones from a strain of laboratory mice that didn’t have a gene for Wnt10b. Lacking the ability to produce Wnt10b protein in bone marrow cells, these mice had 30 percent lower bone volume and bone mineral density than normal mice.

Using PCR analysis of Wnt10b-expressing cells in bone marrow, MacDougald found high levels of collagen and alkaline phosphatase, and expression of transcription factors that turn on genes involved in bone formation.

Bennett discovered another important clue when she found that Wnt10b expression shuts down activity of a gene called PPAR-gamma, which is required for the development of adipocytes or fat cells. "It suggests that Wnt10b’s role may be to block PPAR-gamma, shifting development from the adipocyte pathway to the osteoblast pathway," she says.

In future research, MacDougald hopes to unravel the molecular mechanism for Wnt10b’s bone-building effect. "It’s not only an important scientific question, it’s important to the understanding and potential treatment of osteoporosis and other human diseases," he says. "Right now, there is a need for drugs on the market to stimulate new bone formation. Being able to activate Wnt signaling in bone marrow and osteoblasts might help prevent the loss of bone associated with aging or menopause."

The research was funded by the National Institutes of Health, the U-M Diabetes Research and Training Center, the U-M Core Center for Musculoskeletal Disorders, and the Nathan Shock Mutant and Transgenic Rodent Core. Fellowships to Christina Bennett were from the Tissue Engineering and Regeneration Training Grant and the American Physiological Society Porter Fellowship. Kenneth Longo was supported by a mentor-based postdoctoral fellowship from the American Diabetes Association.

The experimental mice used in the study were produced in the U-M’s Transgenic Animal Model Core facility. The University of Michigan has filed for patent protection on the Wnt10b transgenic mouse.

Additional collaborators on the study include Kenneth A. Longo, Ph.D., a former research fellow in MacDougald’s lab who is now a postdoctoral fellow in the U-M School of Dentistry; Wendy S. Wright, research associate; Larry J. Suva, Ph.D., Center for Orthopaedic Research, University of Arkansas for Medical Sciences; and Timothy F. Lane, Ph.D., Jonsson Comprehensive Cancer Center, University of California, Los Angeles, who developed the Wnt10b knock-out mouse.

MacDougald and his research team published a paper in the August 2004 issue of the Journal of Biological Chemistry, which showed that Wnt10b over-expression in adipocytes produced mice with 50 percent less body fat and fewer fat cells.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>