Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Microfluidic and Nanofluidic Systems

16.02.2005


Max Planck scientists develop fundamentals for new microfluidic and nanofluidic devices


Atomic (or scanning) force microscopy images of liquid morphologies on silicon substrates with rectangular surface channels which have a width of about one micrometer. On the left, the liquid does not enter the channels but forms large lemon-shaped droplets overlying the channels (dark stripes). On the right, the liquid enters the channels and forms extended filaments separated by essentially empty channel segments (dark stripes). In the bottom row, several parallel surface channels can be seen in both images; in the top row, there is only one such channel with a single droplet (left) or filament (right). Close inspection of the upper right image reveals (i) that this filament is connected to thin wedges along the lower channel corners and (ii) that the contact line bounding the meniscus of the filament is pinned to the upper channel edges. Image: Max Planck Institute for Colloids and Interfaces


Morphology diagram as a function of the aspect ratio X of the channel and the contact angle q which characterizes the interaction between substrate material and liquid. This diagram contains seven different morphology regimes which involve localized droplets (D), extended filaments (F), and thin wedges (W) in the lower channel corners. The diagram represents a complete classification of all possible wetting morphologies and should be universal, i.e., it should apply to different liquids and substrate materials. Image: Max Planck Institute of Colloids and Interfaces



The labs of the future will be "labs-on-a-chip", i.e., integrated chemical and biochemical laboratories shrunk down to the size of a computer chip. An essential prerequisite for such labs are appropriate microcompartments for the confinement of very small amounts of liquids and chemical reagents. Directly accessible surface channels, which can be fabricated by available photolithographic methods, represent an appealing design principle for such microcompartments and, thus, provide a new route towards open microfluidic and nanofluidic systems. Scientists from the Max Planck Institute of Colloids and Interfaces, the Max Planck Institute of Dynamics and Selforganization and the University of California in Santa Barbara have shown that such open systems are possible in general but only if the geometry of the surface channels is carefully matched with their wettability (PNAS 102, 1848-1852 (2005).

Many research groups around the world work towards the construction of "labs-on-a-chip" in order to integrate chemical and biochemical analyzers on the micrometer or even nanometer scale. These devices will significantly change the way in which research is performed in the life sciences since they offer the ability to work with much smaller reagent volumes, much shorter reaction times, and the possibility of massive parallel processing. In general, this should lead to increased throughput and, thus, to reduced cost of (bio)chemical analysis. In addition, such integrated labs-on-a-chip have many potential applications in biomedicine and bioengineering. In the context of biomedicine, for example, they could provide fast and detailed analysis of blood samples in the physician’s office without the need to wait several days before the sample has been returned from specialized laboratories. Other applications include customized chips for space travel in order to monitor microbes inside spacecraft or to detect life on other planets.


An obvious prerequisite for such miniaturized labs are appropriate microcompartments for the confinement of very small amounts of liquids and chemical reagents. Like the test-tubes in macroscopic laboratories, these microcompartments should have some basic properties: They should have a well-defined geometry by which one can measure the precise amount of liquid contained in them; they should be able to confine variable amounts of liquid; and they should be accessible in such a way that one can add and extract liquid in a convenient manner.

An appealing design principle for such microcompartments is based on open and, thus, directly accessible surface channels which can be fabricated on solid substrates using available photolithographic methods. The simplest channel geometry which can be produced in this way corresponds to channels with a rectangular cross section. The width and depth of these channels can be varied between a hundred nanometer and a couple of micrometer.

At first sight, it seems rather obvious to use such surface channels as microcompartments. However, if one actually tries to fill these channels with a certain liquid, one observes that the liquid often refuses to enter the channels. In fact, as shown in the new PNAS study, liquids at surface channels can attain a large variety of different wetting morphologies including localized droplets, extended filaments, and thin wedges at the lower channel corners. Examples for these morphologies as observed by atomic (or scanning) force microscopy (AFM) are shown in Figure 1.

When the AFM experiments were first performed, it was not known how to produce a certain liquid morphology since there was no systematic theory for the dependence of this morphology on the materials properties and on the channel design. Such a theory has now been developed. This theory addresses the strong capillary forces between substrate material and liquid and takes the ‘freedom’ of contact angles at pinned contact lines into account. Such a contact line is visible in the upper right image in Figure 1. In such a situation, the contact angle is not determined by the classical Young equation but can vary over a wide range of values.

A surprising prediction of the new theory is that the experimentally observed polymorphism of the wetting liquid depends only on two parameters: (i) the channel geometry, i.e., the ratio of the channel depth to the channel width; and (ii) the interaction between substrate material and liquid. One has to distinguish seven different liquid morphologies which involve localized droplets (D), extended filaments (F), and thin wedges (W) at the channel corners. For microfluidics applications, the most important morphology regime is (F) which corresponds to stable filaments. Since this regime covers a relatively small region of the morphology diagram, it can only be obtained if one carefully matches the channel geometry with the substrate wettability. Thus, a water filament in a narrow channel that has a width of 100 nanometer can sustain an overpressure up to 15 atm. In contrast, if the channel had a width of one millimeter, the water filament could only sustain a thousandth part of an atmosphere.

One relatively simple application of the morphology is obtained if the system is designed in such a way that one can vary or switch the contact angle in a controlled fashion. One such method is provided by electrowetting; alternative methods, which have recently been developed, are substrate surfaces covered by molecular monolayers that can be switched by light, temperature, or electric potential.

The experiments described in the PNAS study use a polymeric liquid that freezes quickly and can then be scanned directly with the tip of an atomic force microsope. However, the same morphology diagram should also apply to other liquids and other substrate materials. It should also remain valid if one further shrinks the surface channels and, in this way, moves deeper into the nanoregime. As one reaches a channel width of about 30 nanometer, one theoretically expects new effects arising from the line tension of the contact line, but such nanochannels have not been studied experimentally so far.

The new PNAS study provides an instructive example for the close relation between basic research and technological development in the micro- and nanoregime: open systems with directly accessible surface channels can be used for micro- and nanofluidic applications but only if one carefully matches the channel geometry with the substrate wettability. This constraint is a direct consequence of the strong capillary forces that dominate in the micro- and nanoregime and can be formulated in a quantitative way using the methods of theoretical physics. In general, the development of any new technology requires a systematic understanding of the underlying physics. This latter constraint applies to all length scales: if one wanted to build a robot which walks over water, for instance, a human-like robot is a bad idea while a spider-like robot is a much better choice.
Original work:

Ralf Seemann, Martin Brinkmann, Edward J. Kramer, Frederick F. Lange, Reinhard Lipowsky
Wetting morphologies at microstructured surfaces
PNAS 102, 1848-1852, February 8, 2005, 10.1073/pnas.0407721102

Dr. Bernd Wirsing | EurekAlert!
Further information:
http://www.mpg.de

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>