Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings suggests that blocking estrogen may be crucial to lung cancer survival

15.02.2005


New and effective treatments for lung cancer may rest on their ability to hinder the action of estrogen in lung cancer cells, according to two studies published in the current issue of Cancer Research. The University of Pittsburgh studies build on current knowledge about the relationship between estrogen and lung cancer growth and suggest that blocking estrogen may be vitally important to improving survival from the disease.



Since 1930, a 600 percent increase in death rates from lung cancer has been reported in women in the United States, leading some experts to suggest that women may be more susceptible to lung cancer than men. The current research contends that this could be due to the effects of estrogen on the lungs.

"Our studies continue to show that lung cancer cells grow in response to estrogen and that stopping or slowing the spread of the disease may be dependent on blocking the action of estrogen," said Jill Siegfried, Ph.D., professor, department of pharmacology and co-leader, Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute. "In fact, in previous studies, we have observed that lung tumor cells contain estrogen receptors at levels comparable to breast cancer cells." A receptor is a structure on the surface of a cell that selectively receives and binds substances.


In the first study, Laura Stabile, Ph.D., instructor in the department of pharmacology at the University of Pittsburgh, and colleagues examined methods to block the action of estrogen in human lung tumors grafted in mice. They compared the effect of blocking the estrogen receptor (ER) pathway alone to blocking it in combination with another receptor pathway – the epidermal growth factor receptor (EGFR). The investigators combined an agent approved for inhibiting the EGFR pathway, gefitinib (Iressa®), with an anti-estrogen agent, fulvestrant (Faslodex®) – a treatment commonly used to manage breast cancer in women with ER positive tumors, but not yet approved for clinical lung cancer treatment. They found that the combined treatment resulted in a tumor volume decrease of 59 percent, compared to a 49 percent decrease for gefitinib treatment alone and a 32 percent decrease for fulvestrant treatment alone. They also found that lung tumors in the combined treatment group were comprised mainly of dead and dying cells, while the number of these cells in the single treatment groups was significantly lower. The study suggests that an interaction between treatments that target both ER and EGFR may enhance the anti-tumor effects of therapy over the use of each agent alone. A pilot clinical trial is already underway testing the combination therapy in women with advanced lung cancer.

"Evidence from our study confirms what has been described for breast cancer – that blocking the estrogen receptor and the epidermal growth factor receptor pathways together is more effective," said Dr. Stabile.

In the second study, Pamela Hershberger, Ph.D., assistant professor in the department of pharmacology at the University of Pittsburgh, examined the effect of estrogen on the expression of genes in lung cancer cells. Using gene arrays, Dr. Hershberger and colleagues reported that some of the same growth genes induced by estrogen in breast cancer also are regulated by estrogen in lung cancer. In addition, the same estrogen inhibitor, fulvestrant, that was active against lung cancer in Dr. Stabile’s study also blocked the ability of estrogen to regulate lung cancer cell gene expression. Dr. Hershberger’s study further showed that other proteins needed for ER to act in breast cancer are found in lung cancer cells.

"Both of these studies clearly suggest that lung cancer cells respond to estrogen and that improving overall patient survival may be contingent upon identifying therapies that target specific pathways and put a halt to estrogen signaling," said Dr. Siegfried.

The studies were funded by a Specialized Program of Research Excellence (SPORE) award in lung cancer from the National Cancer Institute to the University of Pittsburgh Cancer Institute.

Co-investigators on the first study include Jennifer S. Lyker, Christopher T. Gubish, Weiping Zhang, Ph.D., Jennifer R. Grandis, M.D., and Dr. Siegfried. Co-investigators on the second study include Mark Nichols, Ph.D., A. Cecilia Vasquez, Beatriz Kanterewicz, Stephanie Land, Ph.D., and Dr. Siegfried.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>