Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising treatments for Huntington’s disease identified in UCI study

15.02.2005


Combinatorial drug therapies, effective for cancer and AIDS, show potential for Huntington’s and other neurodegenerative diseases



UC Irvine researchers have identified several promising drug compounds that when combined show the potential to treat Huntington’s disease.

In tests on fruit flies, Larry Marsh and Leslie Thompson found that combinatorial drug therapies developed from these compounds halted the brain-cell damage caused by the fatal, progressive neurodegenerative disorder. Such types of therapies have proven very effective in the treatment of other complex human diseases, like cancers and AIDS. And while any human benefits from this study are years off, the research provides the first evidence that a regimen of complementary drugs can treat Huntington’s. Study results appear this week in the early online edition of the Proceedings of the National Academy of Sciences.


“Preclinical testing strategies such as those we used with fruit flies can result in a great savings of cost and time in developing potential disease treatments,” Marsh said. “They can serve to rapidly identify treatment regimens that are very likely to provide effective therapeutic benefit to patients.”

In developing these drug combinations, Marsh and Thompson chose compounds that individually have been shown in other fruit-fly tests and in mouse models to suppress neurodegeneration, but each targets different cellular processes. Included in these combinations are HDAC inhibitors, which also are showing great promise in cancer-treatment clinical trials. When combined, these compounds showed increased suppression qualities with no toxic side effects.

“That’s what’s important to note,” Marsh said. “Every drug is also a potential poison. Thus, we sought to find several drugs, each of which impacts a different point in the disease process, so that we could use low doses of each single drug, but together their combined effects all converge on a single disease process. This minimizes toxic side effects while maximizing benefit.”

Since Huntington’s is a dominant disease, a child with one parent who carries the gene that creates these mutated proteins runs a 50-percent chance of getting Huntington’s disease. The disorder is progressive, and, while typically a late-onset disease, symptoms can appear in childhood. It causes uncontrolled movements, loss of intellectual capacity and emotional disturbances. It eventually results in death. It has been described in medical literature under a host of different names since the Middle Ages.

In previous studies on Huntington’s disease, Marsh and Thompson, together with Joan Steffan of UCI, found that a small protein called SUMO-1 modifies the mutated Huntingtin protein (Htt) linked to the disease, changing its chemical properties and making it more toxic. In addition, they found that drugs called HDAC inhibitors, which were developed for cancer chemotherapy, were able to prevent neuron damage in fruit flies carrying mutated Htt proteins.

Marsh is professor of developmental and cell biology in the School of Biological Sciences, and Thompson is associate professor of psychiatry and human behavior, and of biological chemistry in the School of Medicine. Namita Agrawal, Judit Pallos, Natalia Slepko, Barbara Apostol and Laszlo Bodai of UCI, and Wen Chang and Ann-Shyn Chiang of the National Tsing Hua University in Taiwan contributed to the study. The Heredity Disease Foundation, the Cure HD Initiative, the Huntington’s Disease Society of America and the National Institutes of Health provided funding support.

About the study

Huntington’s disease is caused by an expansion of a repeated stretch of the amino acid glutamine within the Huntingtin protein (Htt). At least eight other neurodegenerative disorders also are caused by this polyglutamine activity. The pathology of these diseases is complex and involves multiple cellular events.

To address these complexities, the researchers matched compounds that together showed greater efficacy then they would individually and at levels in which their toxicity is lessened.

In one test, the researchers combined Congo red (a dye that blocks the formation of toxic polyglutamine fibrils), cystamine (an amino acid found to improve motor-neuron function in Huntington’s-engineered mice) and SAHA (a synthetic HDAC inhibitor).

In the other test, they combined SAHA with Y-27632 (a protein that blocks polyglutamine aggregation) and geldanamycin (a naturally occurring compound found to relieve Parkinson’s-like pathology).

“These results provide a proof-of-principle approach to test combinations of compounds shown singly to have therapeutic efficacy in flies and in mammalian models of Huntington’s disease,” Thompson said. “In addition, they raise the possibility that these particular combinations may prove effective in future human tests.”

About combinatorial drug therapies

Combinatorial drug therapies treat complex diseases in which a single drug given at an effective dose may provide some relief, but only treats one component of the disease process. These regimens are attractive because lower doses of drugs can be used in order to avoid undesirable side effects caused by high-drug concentrations that might be used if a single drug was employed. In addition, combinations of drugs that each provide some relief from symptoms might be expected to provide even greater relief when in combination. Combinatorial drug therapies are currently being used in treatments for certain cancers, AIDS and complex human diseases.

About the University of California, Irvine: The University of California, Irvine is a top-ranked public university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3 billion.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>