Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rat brain’s executive hub quells alarm center if stress is controllable

14.02.2005


Treatments for mood and anxiety disorders are thought to work, in part, by helping patients control the stresses in their lives. A new study in rats by National Institutes of Health (NIH) grantees provides insight into the brain mechanisms likely involved. When it deems a stressor controllable, an executive hub in the front of the brain quells an alarm center deep in the brainstem, preventing the adverse behavioral and physiological effects of uncontrollable stress.



"It’s as if the prefrontal cortex says: ’Cool it, brainstem! We have control over this and there is no need to get so excited’," quipped Steven Maier, Ph.D., University of Colorado, whose study was funded by the National Institute of Mental Health (NIMH) and the National Institute on Drug Abuse (NIDA). Maier and colleagues posted their findings online in Nature Neuroscience, February 6, 2005.

Lack of control over stressful life experiences has been implicated in mood and anxiety disorders. Rats exposed to uncontrollable stress develop learned helplessness, a syndrome similar to depression and post traumatic stress disorder (PTSD). They lose the ability to learn how to escape stressors. Activation of a brainstem area (dorsal raphe nucleus) has been implicated in such reactions. But this area is too small and lacks the proper sensory inputs to judge whether a stressor is controllable. Many of its inputs come conspicuously from the mid-prefrontal cortex area (medial prefrontal cortex), seat of higher order functions, such as problem-solving and learning from experience. These signals are sent via the chemical messenger serotonin, which is involved in mood regulation and in mediating the effects of the most widely prescribed antidepressants. The medial prefrontal cortex has also been implicated as the source of an "all clear" signal that quells fear in rats.*


To find out the role of the medial prefrontal cortex, Maier’s team chemically inactivated it in rats that were learning to control a stressor. The animals showed the same brainstem activation and, eventually, the same behaviors characteristic of depression (failure to learn to escape) and anxiety (exaggerated fear conditioning) as rats exposed to uncontrollable stress.

"If an organism can cope behaviorally with an event, there’s no need for intense physiological adaptation. It has been assumed that when stressors are uncontrollable the organism learns this, and that it is this uncontrollability that sets off the neural cascade," explained Maier. "However, our data suggest that instead it is control that is the active ingredient. If the organism has control and can cope behaviorally, this is detected by the cortex, which then sends inhibitory signals to the brainstem."

In PTSD, which is triggered by uncontrollable stress, medial prefrontal cortex activity is reduced. Proposing an analogous mechanism, Maier speculated that loss of inhibition from the medial prefrontal cortex may explain increased activity of the amygdala (a fear hub) in PTSD.

Also participating the study were: Drs. Jose Amat, Erin Paul, Sondra Bland, Linda Watkins, and Michael Baratta.

Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci. 2005 Feb 06; [Epub ahead of print].

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov
http://www.nimh.nih.gov/Press/prsafetysignal.cfm

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>