Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden sex life of an early eukaryote revealed

26.01.2005


By looking for genes necessary for sexual reproduction, researchers have uncovered evidence that eukaryotic cells have been capable of sex for a very long time. Recent evolutionary analyses of the genome of Giardia intestinalis, a unicellular protist parasite that represents an ancient, early-branching lineage of eukaryotes, has revealed the presence of numerous genes implicated in meiosis, the cellular division process that results in gametes.



Most eukaryotes are known to exhibit sexual reproduction and meiosis, but such processes are unknown in some single-celled protists (protozoa). Despite more than a century of study, Giardia intestinalis was not known to have a sex life. Because Giardia is thought to be a modern representative of one of the earliest diverging eukaryotic lineages, it was simply suspected to have never acquired meiosis. However, the inability to observe processes does not necessarily mean that they are not present.

In this new work, John Logsdon of the University of Iowa and colleagues Marilee Ramesh and Banoo Malik (all previously at Emory University) surveyed the genome sequence of Giardia. In this genome, Logsdon and colleagues found clear evidence for meiosis in Giardia: five genes that encode meiosis-specific proteins broadly in other eukaryotes are also present in Giardia. These data suggest that Giardia is capable of sex and that the earliest eukaryotes diverged after the advent of this key biological process. This report provides the first clear evidence that meiosis arose very early in eukaryotic evolution, bringing science one step closer to understanding the mystery of sexual evolution.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>