Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of enzyme turns fat cells into fat burners

25.01.2005


Lack of the enzyme, acetyl CoA carboxylase 2 or ACC2, appears to turn the adipose or fat cells of mice into fat burners, explaining in part why the animals can eat more and weigh less than their normal counterparts, said Baylor College of Medicine researchers. The report that appears online today in the Proceedings of the National Academy of Sciences.



"We studied the fat cells in these mice bred to lack ACC2," said Dr. Salih Wakil, chair of the BCM department of biochemistry and molecular biology. "We found that the adipose in the mutant mice are now oxidizing fat, hydrolyzing (breaking down using water) fat, and passing it on to the heart and muscle because there is an increase in oxidation of fat in those organs. It also starts oxidizing glucose. In other words, the adipose tissue is becoming a little more oxidative and less involved in the synthesis and storage of fat. We feel this contributes to the status of the animal."

In prior studies, Wakil and his colleagues have demonstrated the effect ACC2 has on mice. Mice bred to lack the enzyme can eat a high fat, high carbohydrate diet without gaining weight, while their normal counterparts become obese and develop type 2 diabetes. "This adds another tissue or organ that helps out in the process of energy maintenance," said Wakil. "ACC2 is potentially a key enzyme in the regulation of weight, obesity, and related problems."


Wakil and his colleagues studied the oxidation of fatty acid and glucose in cultures of fat cells isolated from both normal and mutant mice that lacked ACC2. When the mice were fed a normal diet, fatty acid oxidation was 80 percent higher in the fat cells of the mice lacking ACC2 when compared to normal mice. When they were fed a high fat, high carbohydrate diet for four to five months, the ACC2-deficient mice had a 25 percent higher rate of fatty acid oxidation and twofold higher rate of glucose oxidation than the normal mice.

Others who participated in the research included Drs. WonKeun Oh, Lutfi Abu-Elheiga, Parichher Kordari, Zeiwei Gu, Tattym Shaikenov, Subrahmanyam S. Chirala. The work was supported in part by by the Clayton Foundation for Research and the National Institutes of Health.

Meg Bolton | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>