Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key proteins linked to aging and cancer

04.01.2005


Fox Chase Cancer Center researchers have made new discoveries that shed new light on the mystery of why human tissues, such as skin, age. The findings focus on the composition and assembly of key chromosomal protein complexes involved in shutting down reproduction of aging cells. The report by molecular and cell biologist Peter D. Adams, Ph.D. and his colleagues appears in the January 2005 issue of Developmental Cell.



"In the lab, aging cells are called senescent cells. Senescent cells are no longer able to divide but remain metabolically active," Adams explained. "Accumulation of senescent cells over time appears to contribute to changes in tissue form and function commonly associated with aging, like the skin changes that occur between childhood and old age."

Most normal human cells undergo a limited number of cell divisions but are eventually arrested, either through final differentiation or senescence. Differentiation is the process whereby a proliferating cell stops growing and develops into a cell with a specific function, such as a liver cell or a neuron. Senescence is an irreversible stage in a cell’s life cycle and may underlie the human aging process and have an impact on diseases of aging, such as adult cancers.


"Most importantly, the failure of cells to stop growing through differentiation or senescence can lead to the uncontrolled growth of cancer," Adams emphasized. Both senescence and differentiation involve reorganization of chromatin structure --the complex of DNA, RNA and proteins, called histones, in the cell nucleus.

Previous research has shown that as cells reach senescence, a change in chromatin structure, called SAHF (senescence-associated heterochromatin foci), silences the genes that promote the cells’ growth. Adams’ discovery reveals the mechanism of SAHF formation. SAHF are domains of densely packed chromatin that repress activity of the genes that normally drive cell proliferation. Adams and coworkers have identified at least three proteins in the cell that contribute to formation of SAHF. These are called HIRA, ASF1a and PML. Of particular note, PML is named after acute promyelocytic leukemia, a cancer of white blood cells. Scientists have known for sometime that PML suppresses the formation of this cancer, but no one knew why.

Adams’ work suggests the possibility that this cancer arises because PML is unable to do its job in forming SAHF. If so, then extrapolating from recent findings in other cancers, inactivation of PML, HIRA, ASF1a and formation of SAHF may also contribute to other human cancers.

Future work in Adams’ lab will define the molecular details by which HIRA, ASF1a and PML make SAHF. Ultimately, this work might allow rationale design of therapeutics to treat cancer patients and even alleviate some aspects of human aging.

Adams’ co-authors on the new paper include postdoctoral associates Rugang Zhang, Ph.D., and Xiaofen Ye, Ph.D., graduate student Maxim V. Poustovoitov of Russian State Medical University in Moscow, scientific technicians Hidelita A. Santos and Wei Chen, staff scientist Ilya G. Serebriiskii, Ph.D., structural and computational biologist Roland L. Dunbrack, Ph.D., and staff scientist Adrian A. Canutescu, M.D., all at Fox Chase; Sally M. Daganzo, Ph.D., Jan P. Erzberger, Ph.D., James M. Berger, Ph.D., and Paul D. Kaufman, Ph.D., of Lawrence Berkeley National Laboratory; and John R. Pehrson, Ph.D., of the University of Pennsylvania School of Veterinary Medicine.

Poustovoitov is working in Adams’ laboratory as part of a novel partnership with the Russian medical and scientific institutions to provide training at Fox Chase for master’s- and doctoral-level students. Begun in 1998 with Russian State Medical University, the partnership has expanded over the years to include more students and more affiliations with premier Russian research institutions. Students typically intern at Fox Chase for about 18 months, although several have chosen to continue their studies and pursue doctoral research in their host laboratory.

Adams is a Leukemia and Lymphoma Society Scholar. Grants from the Department of Defense, the National Institutes of Health and the American Federation for Aging Research also helped support the new work on senescent cells.

Karen C. Mallet | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>