Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic resistant bacterium uses Sonar-like strategy to ’see’ enemies or prey

27.12.2004


For the first time, scientists have found that bacteria can use a Sonar-like system to spot other cells (either normal body cells or other bacteria) and target them for destruction. Reported in the December 24 issue of Science, this finding explains how some bacteria know when to produce a toxin that makes infection more severe. It may lead to the design of new toxin inhibitors. "Blocking or interfering with a bacterium’s "detection" mechanism, should prevent toxin production and limit the severity of infection," says Michael Gilmore, PhD, lead author of the study, and currently director of research at the Schepens Eye Research Institute and professor of ophthalmology at Harvard Medical School.



Gilmore and his team have spent years studying the bacterium known as Enterococcus faecalis, one of the leading causes of hospital-acquired infections, to find new ways to treat them. These infections are frequently resistant to many, and sometimes all, antibiotics. Tens of thousands of deaths due to antibiotic resistant infection occur each year in the US, adding an estimated $ 4 Billion to health care costs. Scientist have known since 1934 that especially harmful strains of Enterococcus produce a toxin that destroys other cells, including human cells and even other types of bacteria. They also knew that this toxin was made only under some conditions. Until Gilmore’s study, scientists were unable to explain how the Enterococcus knew when to make it.

In the Science study, Gilmore and his team found that this toxin is made whenever there is another cell type in the environment near the bacterium, such as a human blood cell. They discovered how these bacteria know when other cells are present, and respond accordingly.


In the laboratory, the team found that Enterococcus releases two substances into the environment. One substance sticks to foreign cells. The second substance reports back and tells the Enterococcus to make the toxin. If no cells are in the area, the first substance sticks to the second, preventing it from reporting back to the Enterococcus, and as a result, no toxin is made. According to Gilmore, "These bacteria are actively probing their environment for enemies or food. Based on whether or not they ’see’ other cells, they make the toxin appropriately."

Gilmore says this discovery has several significant implications for the future. "This is a new mechanism that nature devised to ’see’ the environment, and based on that information, respond accordingly. We may be able to learn from nature and adapt a similar strategy to help the aging population cope with loss of vision," says Gilmore.

"Secondly, this discovery will help us to develop new ways to treat infections that are resistant to antibiotics, making them less severe. Based on an understanding of how this toxin system works, we hope to develop toxin inhibitors," says Gilmore.

The third area of interest is currently science fiction, says Gilmore. "If bacteria can see cells in the environment, maybe we can tame these bacteria and engineer this system so that it can be used to see other things in the environment, such as minerals or possibly other disease-causing bacteria," says Gilmore.

Other members of the research team included Drs. Phillip Coburn, University of Oklahoma Health Sciences Center, Christopher Pillar, Schepens Eye Research Institute and Harvard Medical School, Wolfgang Haas, University of Rochester, and Bradley D. Jett, Oklahoma Baptist University. Dr. Michael S. Gilmore is presently Charles L. Schepens Professor of Ophthalmology, Harvard Medical School, and Marie and DeWalt Ankeny Director and Acting CEO of the Schepens Eye Research Institute.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu

More articles from Life Sciences:

nachricht Scientists discover new 'architecture' in corn
21.01.2019 | Louisiana State University

nachricht Nuclear actin filaments determine T helper cell function
21.01.2019 | Universitätsklinikum Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>