Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer may be ’uniquely sensitive’ to inhibitors of PI3K pathway

13.12.2004


Because up to 75 percent of breast cancer patients have an abnormality in a specific cell signaling pathway, drugs that target different molecules along that pathway may be especially effective for treating the disease, says a researcher from The University of Texas M. D. Anderson Cancer Center.



A clearer picture is now emerging about the importance of the phosphatidylinositol 3 kinase (PI3K) pathway to breast cancer development, says Gordon Mills, M.D., Ph.D., a professor and chair of the Department of Molecular Therapeutics. This pathway, which is linked to critical growth factor receptors and is involved in programmed cell death, is aberrant at multiple levels in breast cancer, including mutations in PI3K itself or its many "downstream" players, such as PTEN, or AKT.

"There is a lot of crosstalk between the PI3K pathway and other pathways, a lot of feed-forward and feedback loops," says Mills. "But I and others believe there are central nodes between these intersecting circles that can be effectively targeted with drugs."


Only one PI3K pathway inhibitor is in use to date, but others are increasingly being developed and tested, says Mills, who is discussing the importance of this pathway at the annual San Antonio Breast Cancer Symposium meeting. "At least 20 different companies have recognized the importance of the pathway in breast cancer and are trying to develop drugs that target it."

In the future, breast cancer tissue samples from newly diagnosed patients can be tested for their specific PI3K pathway abnormality in order to find a drug that zeroes in on what may be the cancer’s Achilles’ heel, Mills says. "Using those drugs in combination with other treatments such as chemotherapy may significantly advance breast cancer care," he says.

Nancy Jensen | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>