Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Signal’ identified that enables malarial parasites to target blood cells

10.12.2004


Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

The investigators, led by Kasturi Haldar and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized. Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine. Other key researchers on this study were Souvik Bhattacharjee; Christiaan van Ooij; Konstantinos Liolios; Travis Harrison; and Carlos Estrano.

Findings from the Northwestern study were published in the Dec. 10 issue of the journal Science. Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world’s population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries. Plasmodium faciparum is the most virulent form of the four human malarial parasite species, killing over 1 million children each year, and is responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.



Following invasion of human red blood cells – the "blood stage" of malaria – P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival and are responsible for fatal pathologies such as cerebral – or "brain" – malaria as well as placental malaria. It is during the "blood stage" of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a "signal" on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a "secretome") that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (five to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins). Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.

Elizabeth Crown | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>