Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chimpanzee brains are asymmetrical in key areas and their handedness reflects it

06.12.2004


The hippocampus skews ’right,’ especially in males, plus the righty-lefty distinction may go back 5 million years

New MRI-based studies present more evidence that the brains of chimpanzees are human-like in terms of the relationships among brain asymmetry, handedness and language, according to research undertaken at the Yerkes National Primate Research Center in Atlanta. Understanding our evolutionary cousins helps us to understand what makes us human. Two related reports appear in the December issue of Behavioral Neuroscience, which is published by the American Psychological Association (APA).

In the first study, Hani Freeman, BA, Claudio Catalupo, PhD (also with Georgia State University), and William Hopkins, PhD (also with Berry College), took magnetic resonance images of 60 chimpanzees to measure the anatomy of two key structures in their brains’ limbic systems, an early-evolving central region that includes the hippocampus and amygdala. In the MRI pictures, the hippocampus (which regulates learning and consolidation of spatial memory, mood, appetite and sleep) was asymmetrical, its right half significantly larger than its left. This asymmetry was bigger in males. These findings are consistent with studies of human hippocampi, which are also asymmetrical. At the same time, just as in humans, the amygdalas of the chimps were symmetrical.



Studies such as this confirm that human and chimp brains are not only asymmetrical, but asymmetrical in the same way. The findings echo previous looks at the non-limbic parts of chimpanzee brains, which also appear human-like in their patterns of asymmetry. This fact, especially if studied in the context of functional behaviors that reflect asymmetries, may help scientists get a better fix on the evolution of the limbic system in all primates, including humans.

Says Hopkins, "The limbic system asymmetries advance the position that asymmetries are fundamental aspects of the nervous system of all primates, and apply to more primitive systems in the brain." The asymmetries influence behavior. Given the new findings about chimps and previous findings that the limbic system affects human facial expression and emotions, it now seems more clear why across primates, says Hopkins, the left half of the face – controlled by the right side of the brain -- is more emotionally expressive. In addition, a right-dominant hippocampus would explain apes’ well-developed spatial memory. Again, that parallels how the right hippocampus in humans is involved in spatial memory.

In a second study, Hopkins and Cantalupo report the first-ever evidence of an association between hand preference and asymmetries in three areas of the brain cortex in chimps. Observing 66 chimps, they correlated asymmetries in brain anatomy with three measures of handedness: Simple reaching (which hand chimps used to pick up a raisin thrown into the cage), two-handed feeding (which hand chimps used to feed themselves chunks of fruit while holding the whole piece, such as a banana, in the other hand), and a measure of coordinated bimanual actions (which hand chimps used to fish peanut butter from a plastic tube with a finger).

Left-handed and right-handed chimps differed relative to the asymmetries in two primary motor areas, the planum temporale and the precentral gyrus. Say the authors, the results "challenge the long-held belief that the neurobiological substrates for handedness are unique to humans." Just as in humans, neuroanatomy governs whether a chimp becomes a lefty or a righty. Hopkins points out that chimps are also strongly right-handed for manual gestures and throwing, a clue to the origins of more general right-hand dominance in both chimps and humans.

This second study also confirms that handedness goes way back. Its findings, say the authors, "suggest that the neurobiological basis for handedness evolved as early as five million years ago and emerged independent of systems associated with language and speech."
The findings mesh with other recent human evidence that handedness has nothing to do with asymmetry in language-related cortical areas. The Yerkes chimps showed no links between handedness and the classic left-side "language" areas. Hopkins says, "Many studies document a correlation between handedness and lateralization, but these are only correlations. It doesn’t mean that being right-handed causes a person to be left-hemisphere dominant for language, or vice versa. Rather, these two abilities might be assigned to the same sides but independently of each other." The findings about chimps support the hypothesis that a third, undiscovered "sidedness" factor may account for both handedness and language-related dominance.

To further understand language functions relative to brain asymmetries, the Yerkes team will soon begin using another brain-imaging technology, PET scans (positron emission tomography), to evaluate brain regions that are active when chimpanzees manually gesture and/or vocally communicate.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Life Sciences:

nachricht Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow
16.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>