Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Genomic Code: Gene Decoding Revealed at Atomic Level

06.12.2004


The critical decoding structure produced when modified nucleosides enable tRNA to decode by wobble recognition. Only the decoding region of a 50,000+ atom structure of the ribosome (small subunit) is shown. The modified nucleoside platform (orange) that stabilizes the codon-anticodon interaction, and the modified nucleoside that wobbles (green) are shown. The structure was determined at the atomic resolution of -3 angstroms (3 X 10 –10 meters).


A recent finding by a North Carolina State University biochemist advances the fundamental biology of how genetic information, encoded in DNA, is decoded for the production of proteins.

Dr. Paul F. Agris, professor of biochemistry at NC State, and academic colleagues from England and Poland show concrete evidence in favor of the 1966 “Wobble Hypothesis” offered by Francis Crick, the co-founder of the DNA molecule and its double-helix structure, and Agris’ own “Modified Wobble Hypothesis” posed in 1991. The scientists used x-ray crystallography of the cell’s protein-manufacturing unit, the ribosome, to provide a visual snapshot of the decoding process.

The research is published in the December 2004 edition of Nature Structural and Molecular Biology.



The Wobble Hypothesis was Crick’s attempt to make sense of how the cell decodes the genetic information of DNA – the molecule that constitutes all the genetic information in a cell – and then, from that information, makes biologically active proteins, Agris said.

DNA has 61 three-letter codes that are translated by transfer RNA (tRNA) into amino acids; proteins are made of amino acids. But there are only 20 natural amino acids. Squaring the disparity between the number of codes and the number of amino acids – there are three times as many codes as there are amino acids – became a hurdle for Crick and other early geneticists, Agris explained. Crick attempted to clear this hurdle with the Wobble Hypothesis. He based this theory on the first report of a tRNA molecule’s chemical structure discovered by Robert Holley in 1963.

Normally, RNA molecules are composed of four nucleosides: adenosine, guanosine, cytosine and uridine (A,G,C,U). But the tRNA molecule Holley studied included a modified nucleoside called inosine (I), Agris says. Seeing this inosine in an important area of the tRNA molecule – an area that read the three-letter DNA codes when the cell synthesizes proteins – led Crick to believe that a single tRNA used inosine to read more than one code, and that therefore the 61 codes were decoded by fewer than 61 tRNAs.

As an example, Agris used the amino acid alanine, which has four codes. Crick’s hypothesis would allow that only two tRNA molecules could be capable to decode all four alanine codes. Using the modified nucleoside I in place of A, G, C or U, one tRNA may be able to read three codes, effectively “wobbling” the reading. Twenty-five years after the Wobble Hypothesis, Agris proposed his Modified Wobble Hypothesis. It stated that modified nucleosides other than inosine would in some cases expand tRNAs ability to translate codes by wobbling to greater numbers of three-letter codes, whereas other modified nucleosides would restrict wobble to only one or two codes.

Now, in the recent paper, Agris and colleagues prove Agris’ alteration to Crick’s hypothesis was correct: Cellular modification of tRNA alters chemistry and structure in a manner critical for tRNA to decode more than one three-letter code. Using atomic-level resolution – in which researchers can distinguish atom from atom – and working with a tRNA specific for the amino acid lysine, Agris and his colleagues show modified nucleosides enabling tRNA to decode genomic information on the ribosome, the cell’s protein synthesis machinery.

Specifically, it shows modifications enabling the decoding of two codes. One modification acts like a platform on which decoding takes place, and the other allows a novel chemical and physical interaction to occur between tRNA and the code, Agris said. “This is the first visualization that modifications are critical for decoding the genome through wobble,” he said.

Agris says that 15 to 20 percent of tRNAs in all organisms require modified chemistries in order for codes to be properly read and protein synthesis to be successful. “An understanding of how modified nucleosides enable and improve wobble recognition of the three-letter codes for protein synthesis opens the possibility of using modified nucleosides to expand the cells’ use of tRNA to make new proteins, or in new ways to target the protein synthesis machinery in pathogens,” Agris said.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>