Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thinking about moving? Let brain waves do the walking

03.12.2004


Using brain waves to control screen cursor movements, rather than moving a mouse by hand, seems like science fiction! Yet such direct control over our environment is an integral part of the development work being undertaken by participants in the Presencia project.

The IST project Presencia is not due for completion until October 2005, yet project researchers have already developed a working brain/computer interface able to provide direct control of computers. The method is primitive as yet, but has been demonstrated to work. Users experiencing the system have a cap of electroencephalogram (EEG) electrodes placed upon their head. These electrodes are then connected to a pocket PC that records the EEG data or brain waves in real-time. Sat in front of the PC screen, users imagine moving the cursor to the left and then to the right, without actually moving their hands.

The whole procedure is repeated 20 times for each different movement while the PC records the volunteer’s brain wave data throughout. With the Presencia software trained to recognise the volunteer’s brain wave patterns, activation of a control signal then allows the user to move the on-screen cursor either to the left or to the right, simply by imagining the movement!



Explaining that the computer can be trained in the same way for foot movements and up/down control of the cursor, Christoph Guger (of Austria’s Guger Technologies) stresses that such training is not difficult. “We estimate that about six per cent of people, on average, can learn to control such simple cursor movements within around thirty minutes, with an accuracy of around ninety per cent. Almost everyone could train themselves to do it within a day.”

Presencia project participants are developing the technology to navigate ‘caves’, or virtual environments. Here VR (virtual reality) gloves and the brain/computer interface enable participants to move around within an environment and interact with others present. However, the technology also has obvious potential for patient rehabilitation applications. Here the brain/computer interface could be used to control prosthetic limbs or drive a wheelchair.

Guger admits that in its present form the technology is experimental. In theory, the interface could be developed to help patients suffering from the neuro-muscular disease ALS (Amyotrophic Lateral Sclerosis) for example, helping them to write complete sentences. However, the present rate of production of one minute per character will need much more development before reaching commercial reality.

Yet he believes that such direct brain control of our surrounding is only a matter of time. “In 1999, there were just twenty-one labs in the world working on this area – now there are over one hundred.” As he says, “Thirty years ago, pacemaker implants into the human heart were unusual – now we take them for granted.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>