Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Random gene activation helps ulcer bug escape immune system

22.11.2004


The bacterium that causes ulcers and contributes to stomach cancers uses a clever interaction between two genes to randomly tighten and loosen its grip on the stomach, according to a study by researchers at Washington University School of Medicine in St. Louis and Umeå University in Sweden.



Helicobacter pylori often binds tightly to cells of the stomach lining to feed, but the newly identified interaction ensures that a small reservoir of bacteria are always more loosely connected. This reservoir is much more likely to survive if the host mounts a strong immune response. "Basically, if you’re holding onto someone’s T-shirt and they start punching you hard, you’d like to be able to let go," jokes Douglas Berg, Ph.D., Alumni Professor of Molecular Microbiology and an author of the study. "Any savvy bacteria are going to want to be able to do the same."

New insights into how H. pylori sticks to and then releases from the stomach wall will advance efforts to design better drugs and vaccines against the bacterium, which is estimated to be present in more than half of the world’s population. Most H. pylori infections in the U.S. and other industrialized nations can be treated with antibiotics, but treatments are too costly for many sufferers in underdeveloped nations, where the bacteria’s pervasiveness and poor sanitation significantly increase the risk of repeat infections. In addition, resistance to standard drug therapies is a major problem in these countries.


The study appears in the online edition of Proceedings of the National Academy of Sciences. It will appear in print in the journal on November 30. Researchers at Umeå University led by Anna Arnqvist, Ph.D., associate professor of molecular biology and medical biochemistry and a former Washington University predoctoral student, studied a Swedish strain of H. pylori. They focused on BabA, a protein that binds to Lewis B antigen receptor, a carbohydrate structure on the surface of stomach cells. Because they help organisms stick to particular targets in a glue-like fashion, BabA and proteins like it are collectively known as adhesins.

One of the Swedish strain’s two copies of the gene for BabA is "silent," or blocked from use by damage in a region of DNA normally involved in the gene’s activation. The second copy is missing an essential portion of DNA, making it completely nonfunctional. "This suggested that the strain doesn’t make BabA protein at all, making it equivalent in that regard to about one-third of all the other clinical isolates of H. pylori scientists have studied," Berg says.

Given that the strain didn’t appear to produce BabA protein, the bacteria should have been unable to get a grip on the Lewis B receptor. However, scientists found that a small minority of the bacteria still stuck very tightly to Lewis B.

Researchers then determined that this resulted from the bacteria recombining DNA from the silent BabA gene and DNA from the gene for a similar protein, BabB. Scientists aren’t sure what, if anything, BabB sticks to, but they do know that its similarities to BabA include biochemical "hooks" at the beginning and end of the protein. These hooks anchor the proteins in the bacteria’s cell wall. The BabA gene’s middle section encodes the glue that makes the protein stick. The rare bacteria that could grip Lewis B had spliced that middle section from the silent BabA gene into BabB, providing themselves with the equivalent of a working BabA gene and its protein product.

BabA-BabB gene recombination is relatively rare because characteristics of the segments of DNA being combined make them technically difficult for the bacteria to splice together. In addition, the BabB gene has a built-in genetic feature that allows the gene to turn on and off irregularly as the bacteria reproduce. "The BabB gene has a highly repetitive section that has a tendency to slip when the bacteria copies its DNA prior to cell division," Berg explains. "These slips can introduce extra repeats or delete them, shifting how the gene is translated from DNA to protein in a way that’s likely to halt protein synthesis by introducing a premature stop signal."

The net result, according to Berg, is that the bacteria’s ability to stick to the Lewis B receptor is metastable--in every generation, a small number of the new bacteria will switch from a tight grip to no grip, or vice-versa. "This metastability is likely an important component of the bacteria’s ability to adapt to host immune system responses," Berg says.

Berg and his Swedish colleagues are currently working to better understand BabB, investigating, among other things, whether the gene has a role to play on its own as a producer of a bacterial adhesin or only acts as a random enabler of BabA. Among the approximately 30 H. pylori surface proteins so far known to scientists, researchers have found other pairs of closely related genes. Included in these pairs are other genes that code for surface adhesins. "We also will take a close look at some of these pairs," Berg says. "We’re eager to find out whether they contain variations of this special regulatory system in BabA and BabB, or whether they control the strength and specificity of H. pylori adherence in other ways."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>