Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Way to Boost Grain Crops’ Drought Tolerance

18.11.2004


UC Riverside Team Finds That Lowering Enzyme Increases Drought Tolerance in Corn



Researchers at the University of California, Riverside report the development of technology that increases the tolerance of grains crops to drought by decreasing the amount of an enzyme that is responsible for producing the plant hormone ethylene.

UCR Biochemist Daniel R. Gallie led the research, funded by the U.S. Department of Agriculture, the National Science Foundation and the California Agricultural Experiment Station. The findings will be published in the December issue of The Plant Journal in a paper titled ACC Synthase Expression Regulates Leaf Performance and Drought Tolerance in Maize.


Ethylene is vital in regulation of plant responses to environmental stresses, such as flooding and drought, and to attack by pathogens. But often, ethylene initiates leaf death in response to adverse conditions, sacrificing less essential parts of a plant to protect the growing tip, responsible for producing flowers, the reproductive organs of plants. Gallie said that he and his research team have examined the role of ethylene during plant growth and development since 1997.

In the most recent study, conducted by UCR researchers and Pioneer Hi-Bred International, an Iowa-based developer and supplier of seed to farmers, the authors targeted ACC synthase, an enzyme required for the production of ethylene, screening thousands of plants for naturally occurring mutants that were deficient in the enzyme.

The researchers isolated several such plants, and one in particular that produced substantially lower levels of the hormone. Leaves from this mutated plant remained functional and maintained photosynthetic function longer than non-altered plants.

In addition, the plants were more resistant to the effects of adverse environmental conditions. Surprisingly, by reducing the level of ethylene, all the leaves of the altered plants contained higher levels of chlorophyll and leaf protein, and functioned better than control leaves. “Thus, they are better able to survive conditions of drought and remain productive,” said Professor Gallie, who led a research team that included UCR Colleague Todd E. Young and Robert B. Meeley, of Pioneer Hi-Bred. “Erratic rainfall and conditions of drought have plagued farmers from time immemorial, and are responsible for substantial losses in crop yield when they do occur.”

For several years, Gallie said, a number of studies on global climate have predicted an increase in global temperature, and regional conditions of drought, which may have already begun. “Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now, and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

The findings by Gallie and his research team suggest that ethylene controls the level of leaf function under normal growth conditions, as well as during adverse environmental conditions.

Gallie’s research with corn opens the door to producing crops better able to withstand periodic losses in rainfall, including grains, which are the most important direct source of food for livestock and for a majority of humans. “Our discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low, particularly those who grow crops in arid areas, such as exists in many developing [is he is okay with this change] countries,” said Gallie. “As global warming continues to change our own environment in the U.S., our work will be important in helping U.S. farmers continue to produce the food we need even as our climate becomes unpredictable.”

Future inquiries will most likely focus on how ethylene may regulate other aspects of plant growth and development, such as during flower development and root growth, Gallie added.

Ricardo Duran | alfa
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Scientists discover new 'architecture' in corn
21.01.2019 | Louisiana State University

nachricht Nuclear actin filaments determine T helper cell function
21.01.2019 | Universitätsklinikum Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>