Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Way to Boost Grain Crops’ Drought Tolerance

18.11.2004


UC Riverside Team Finds That Lowering Enzyme Increases Drought Tolerance in Corn



Researchers at the University of California, Riverside report the development of technology that increases the tolerance of grains crops to drought by decreasing the amount of an enzyme that is responsible for producing the plant hormone ethylene.

UCR Biochemist Daniel R. Gallie led the research, funded by the U.S. Department of Agriculture, the National Science Foundation and the California Agricultural Experiment Station. The findings will be published in the December issue of The Plant Journal in a paper titled ACC Synthase Expression Regulates Leaf Performance and Drought Tolerance in Maize.


Ethylene is vital in regulation of plant responses to environmental stresses, such as flooding and drought, and to attack by pathogens. But often, ethylene initiates leaf death in response to adverse conditions, sacrificing less essential parts of a plant to protect the growing tip, responsible for producing flowers, the reproductive organs of plants. Gallie said that he and his research team have examined the role of ethylene during plant growth and development since 1997.

In the most recent study, conducted by UCR researchers and Pioneer Hi-Bred International, an Iowa-based developer and supplier of seed to farmers, the authors targeted ACC synthase, an enzyme required for the production of ethylene, screening thousands of plants for naturally occurring mutants that were deficient in the enzyme.

The researchers isolated several such plants, and one in particular that produced substantially lower levels of the hormone. Leaves from this mutated plant remained functional and maintained photosynthetic function longer than non-altered plants.

In addition, the plants were more resistant to the effects of adverse environmental conditions. Surprisingly, by reducing the level of ethylene, all the leaves of the altered plants contained higher levels of chlorophyll and leaf protein, and functioned better than control leaves. “Thus, they are better able to survive conditions of drought and remain productive,” said Professor Gallie, who led a research team that included UCR Colleague Todd E. Young and Robert B. Meeley, of Pioneer Hi-Bred. “Erratic rainfall and conditions of drought have plagued farmers from time immemorial, and are responsible for substantial losses in crop yield when they do occur.”

For several years, Gallie said, a number of studies on global climate have predicted an increase in global temperature, and regional conditions of drought, which may have already begun. “Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now, and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

The findings by Gallie and his research team suggest that ethylene controls the level of leaf function under normal growth conditions, as well as during adverse environmental conditions.

Gallie’s research with corn opens the door to producing crops better able to withstand periodic losses in rainfall, including grains, which are the most important direct source of food for livestock and for a majority of humans. “Our discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low, particularly those who grow crops in arid areas, such as exists in many developing [is he is okay with this change] countries,” said Gallie. “As global warming continues to change our own environment in the U.S., our work will be important in helping U.S. farmers continue to produce the food we need even as our climate becomes unpredictable.”

Future inquiries will most likely focus on how ethylene may regulate other aspects of plant growth and development, such as during flower development and root growth, Gallie added.

Ricardo Duran | alfa
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>