Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Predator Environment Has Unexpected Impact on Aging in Fish

09.11.2004


UC Riverside Researchers Find that Fish Living in High-Predator Environments Challenge Classic Evolutionary Theories



Classic evolutionary theories of senescence, or the evolution of the rate at which organisms deteriorate as they age, have been challenged by the findings of researchers at the University of California, Riverside.

In the 1950s, Peter Medawar, winner of a Nobel Prize for medicine, and George Williams, a renowned evolutionary biologist, developed theories for the evolution of senescence, which predicted that organisms that are exposed to high mortality imposed by external factors, like disease or predation, will evolve to deteriorate more rapidly as they get older. Their predictions have been widely accepted and are supported by some experiments. Now, a study by UC Riverside researchers comparing fish living in high- and low-predator environments has found that these classically held theories of aging fail to predict how aging has evolved in nature.


The research findings of David Reznick, a professor of biology at UCR, were published in an article titled “Effects of Extrinsic Mortality on the Evolution of Senescence in Guppies” in the Oct. 28 issue of Nature. Co-authors included UCR colleagues Michael J. Bryant and Derek Roff; and from Colorado State University, biologists Cameron K. and Dionna E. Ghalambor.

The research group studied 240 individually reared guppies, derived from four natural populations. The grandparents of these fish were collected from two watersheds in the Caribbean island of Trinidad. Each watershed held populations that lived either with or without predators and hence experienced either high or low mortality rates. The researchers evaluated aging in these fish by comparing their life spans, mortality rates, fertility, and their swimming performance. Some of their results were not predicted by theory. “We instead found that senescence was a mosaic of traits,” said Reznick. “The high-predation guppies have longer average and maximum lifespans. They have lower mortality rates throughout their lives. They have higher fecundity throughout their lives, plus the rate at which fecundity declines with age (a measure of reproductive senescence) declines less rapidly with age.”

The only aspect of their results that was consistent with classical predictions was the rate of decline in acceleration and maximum swimming speed, which are analyses of neuromuscular performance. In youth, guppies from high-predation environments are faster than those from low predation environments. All guppies slowed down with age, but the rate of decline for fish in high-predation environments was faster so that, in old age, they were no longer faster than their low-predation counterparts.

The composite picture is that all of these fish deteriorate with age, but the comparative rates of deterioration is a mix of responses, most of which do not correspond to classical theory. The researchers give three possible reasons for the unexpected results. All of these reasons are derived from newer theories for the evolution of senescence that have yet to receive serious consideration.

The first hinges on body size and fertility. Guppies in the high-predator environment grew more quickly and their rate of reproduction increased more rapidly with age, which offset some of the mortality rate differences with their low-predator counterparts.

Secondly, as predators killed guppies, they also reduced the population density of the survivors who, in turn, experienced higher food availability. More resources for the survivors can offset some of the predicted effects of higher mortality.

Thirdly, fish living in the high-predator environment may benefit from natural selection. Predators cull those who are slower and leave a higher proportion of quick fish that have high reproductive potential.

A high-predation environment therefore tends to select for fish that are quicker, live longer and maintain a higher level of performance and fertility, but whose swimming speed drops off more quickly with age. The differences between these results and the classical predictions gives cause to take the new, more derived, theories for the evolution of the aging process more seriously.

A National Science Foundation grant and the Academic Senate of the University of California supported the research.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>