Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Predator Environment Has Unexpected Impact on Aging in Fish

09.11.2004


UC Riverside Researchers Find that Fish Living in High-Predator Environments Challenge Classic Evolutionary Theories



Classic evolutionary theories of senescence, or the evolution of the rate at which organisms deteriorate as they age, have been challenged by the findings of researchers at the University of California, Riverside.

In the 1950s, Peter Medawar, winner of a Nobel Prize for medicine, and George Williams, a renowned evolutionary biologist, developed theories for the evolution of senescence, which predicted that organisms that are exposed to high mortality imposed by external factors, like disease or predation, will evolve to deteriorate more rapidly as they get older. Their predictions have been widely accepted and are supported by some experiments. Now, a study by UC Riverside researchers comparing fish living in high- and low-predator environments has found that these classically held theories of aging fail to predict how aging has evolved in nature.


The research findings of David Reznick, a professor of biology at UCR, were published in an article titled “Effects of Extrinsic Mortality on the Evolution of Senescence in Guppies” in the Oct. 28 issue of Nature. Co-authors included UCR colleagues Michael J. Bryant and Derek Roff; and from Colorado State University, biologists Cameron K. and Dionna E. Ghalambor.

The research group studied 240 individually reared guppies, derived from four natural populations. The grandparents of these fish were collected from two watersheds in the Caribbean island of Trinidad. Each watershed held populations that lived either with or without predators and hence experienced either high or low mortality rates. The researchers evaluated aging in these fish by comparing their life spans, mortality rates, fertility, and their swimming performance. Some of their results were not predicted by theory. “We instead found that senescence was a mosaic of traits,” said Reznick. “The high-predation guppies have longer average and maximum lifespans. They have lower mortality rates throughout their lives. They have higher fecundity throughout their lives, plus the rate at which fecundity declines with age (a measure of reproductive senescence) declines less rapidly with age.”

The only aspect of their results that was consistent with classical predictions was the rate of decline in acceleration and maximum swimming speed, which are analyses of neuromuscular performance. In youth, guppies from high-predation environments are faster than those from low predation environments. All guppies slowed down with age, but the rate of decline for fish in high-predation environments was faster so that, in old age, they were no longer faster than their low-predation counterparts.

The composite picture is that all of these fish deteriorate with age, but the comparative rates of deterioration is a mix of responses, most of which do not correspond to classical theory. The researchers give three possible reasons for the unexpected results. All of these reasons are derived from newer theories for the evolution of senescence that have yet to receive serious consideration.

The first hinges on body size and fertility. Guppies in the high-predator environment grew more quickly and their rate of reproduction increased more rapidly with age, which offset some of the mortality rate differences with their low-predator counterparts.

Secondly, as predators killed guppies, they also reduced the population density of the survivors who, in turn, experienced higher food availability. More resources for the survivors can offset some of the predicted effects of higher mortality.

Thirdly, fish living in the high-predator environment may benefit from natural selection. Predators cull those who are slower and leave a higher proportion of quick fish that have high reproductive potential.

A high-predation environment therefore tends to select for fish that are quicker, live longer and maintain a higher level of performance and fertility, but whose swimming speed drops off more quickly with age. The differences between these results and the classical predictions gives cause to take the new, more derived, theories for the evolution of the aging process more seriously.

A National Science Foundation grant and the Academic Senate of the University of California supported the research.

Ricardo Duran | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>