Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing can identify ischemic and nonischemic heart failure

08.11.2004


Researchers at Johns Hopkins have shown that genetic testing can be effectively used to distinguish between heart failure patients who suffer from ischemic or nonischemic forms of the disease. Using groupings or clusters of a patient’s gene expression to compare to a diseased "test" set that identifies the cause of heart failure, the Hopkins team assembled a 90-gene profile to determine which type of heart failure had most likely developed. Results showed the test profile to be highly accurate, with 90 percent specificity.



The findings could, if affirmed and adapted to a standardized and affordable test format, someday aid physicians in the diagnosis of heart failure and help determine which kind of therapy is best to use for the condition. In ischemic heart disease, the patient’s arteries have narrowed and the heart cannot pump normally because blood flow (and thus oxygen) is often restricted to the heart muscle. In nonischemic forms of the disease, the heart cannot pump normally because the heart muscle has often enlarged for other reasons, such as physical deformity or alcohol abuse. Both conditions can lead to cardiac arrest or more gradual heart failure as the muscle weakens over time.

"The gene expression differences between various forms of cardiovascular disease are poorly understood, despite the fact that we know there are major differences in what is happening at the cellular level," said Michelle Kittleson, M.D., cardiology fellow at the Johns Hopkins Heart Institute and lead author of the study to be presented at the American Heart Association’s Scientific Sessions 2004 on Nov. 6, as a finalist for the Samuel A. Levine Young Clinical Investigator Award. "Our study shows that gene expression profiling for heart failure patients is not only possible, but accurate as well. Based on these initial findings, we hope to close the gaps in our understanding of the gene expression patterns underlying heart failure and treatments for the illness. Ultimately, we hope to be able to use genetic profiling to classify patients according to their risk of developing all kinds of heart disease."


To create a gene expression profile, or test, the Hopkins team collected 16 biopsy tissue samples, six from patients with the ischemic form of the disease and 10 from nonischemic cases, all with end-stage heart failure. Most of the test samples came from heart transplant patients at Hopkins in the last 20 years. Using a biostatistical technique called prediction analysis, the researchers identified the 90 genes that best distinguished the two kinds of heart failure. The large number of genes used also improved accuracy of the test.

This gene profile was later validated by testing it against 38 other tissue samples, including 14 provided from the University of Minnesota. These test samples involved tissue from all stages of heart failure, including end-stage, post-LVAD (a type of heart surgery) and biopsy samples from newly diagnosed patients.

"Now that we know we can genetically profile heart patients according to ischemic and nonischemic heart disease, our next step is to develop a test that can be used in a clinical setting," said senior study author and cardiologist Joshua Hare, M.D., a professor of medicine at the Heart Institute. "Ischemic patients need to be monitored more closely in case they develop drug resistance and require surgery to unblock clogged arteries. Knowing which patients to treat and how closely to monitor them could significantly improve how well physicians manage the disease and, consequently, improve health outcomes."

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>