Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial sensor for p53 tumor-suppressing pathway identified

04.11.2004


DNA breaks from radiation, toxic chemicals, or other environmental causes occur routinely in cells and, unless promptly and properly repaired, can lead to cancer-causing mutations. When the breaks cannot be repaired, and the cell is vulnerable to becoming cancerous, critical backup protection governed by the p53 protein kicks in. This protein is the end of the line in a vital signaling cascade that triggers cells with fatally damaged DNA to self-destruct so that they cannot cause cancer.



The importance of the p53 pathway in preventing cancer cannot be overstated. Scientists know, for example, that in the majority of human cancers the p53 pathway has been disabled. Despite the crucial nature of the p53 tumor-suppressor pathway, the answer to a central question has evaded researchers for years: How is the p53 pathway alerted to the presence of DNA breaks in the cell in the first place? If p53 lies at the end of the line in this pathway, what molecule is at the front, and how does it do its job?

In a new study led by researchers at The Wistar Institute, the sensor protein that identifies DNA breaks and activates the p53 cell-death program has been identified. Additionally, structural analysis of the protein and its interactions with DNA has revealed the specific mechanism by which the protein detects the breaks. The study will be published November 3 in the advance online edition of the journal Nature.


"We had been studying this protein for some time, and we knew it was important in the cellular response to DNA breaks," says Thanos D. Halazonetis, D.D.S., Ph.D., a professor in the gene expression and regulation program at The Wistar Institute and senior author on the Nature study. "Now, we know it is the initial sensor for the p53 tumor-suppressor pathway - it is responsible for detecting DNA breaks - and we also have a good idea how it works."

According to Halazonetis, the protein, known as 53BP1, recognizes a molecular site usually hidden within the DNA-packaging structure called chromatin, which makes up our chromosomes. Chromatin consists of DNA coiled around the edges of molecules called histones to form disk-shaped entities called nucleosomes. The nucleosomes themselves, then, are tightly packed together - possibly like a stack of coins, Halazonetis suggests - to form the dense chromatin. When all is as it should be with the DNA, a target site for 53BP1 lies at the center of each of the stacked nucleosome disks and is not available for binding.

"But if you have a DNA break, you can imagine that the nucleosomes might unravel and the stacking of the nucleosomes fall apart, exposing the site that 53BP1 recognizes," Halazonetis says. "This is the model we are proposing for how cells sense the presence of DNA breaks to activate the p53 pathway."

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>