Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered stem cells can home in on tumors and deliver drug payload in mice

03.11.2004


Researchers at The University of Texas M. D. Anderson Cancer Center have perfected a delivery system for anticancer treatment that zeroes in on a tumor and becomes part of its supporting tissue. This new "cellular vehicle" then pumps drugs directly into cancer cells to disable them, but leaves normal tissue alone.



They say their study, published in the Journal of the National Cancer Institute, is a proof of principle, conducted in mice, that shows this kind of strategy could be promising when developed for human use. "This is the most effective homing strategy seen to date, much better than any viral delivery strategy tested so far," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "It is remarkable that these cells can find tumors wherever they are and become part of them."

The new approach uses human mesenchymal stem cells (MSC), the body’s natural tissue regenerators. Tissue that is injured sends signals to these unspecialized, progenitor cells, and they, in turn, migrate to the damage and morph into whatever kind of tissue - bone, fat, muscle, cartilage, tendons - is needed to repair the wound. Tumors, however, are "never-healing wounds" that also signal these stem cells, and then use them to help build up "stromal," or connective tissue, that structurally supports and nurtures tumor growth, says Andreeff. "Tumors constantly remodel their architecture with the help of these special stem cells."


Andreeff, first author Matus Studeny, M.D., who was a research fellow in Andreeff’s lab, and a group of six other researchers turned the tables on cancer, taking advantage of a tumor’s ability to attract these stem cells. They designed a novel delivery system by isolating a small quantity of MSC from bone marrow, and then greatly expanded those cells in the lab. The researchers then used a virus to deliver a particular gene that has therapeutic action against cancer into the stem cells. When given back through an intravenous injection, the millions of engineered mesenchymal progenitor cells engraft where the tumor environment is signaling them, and then activate the therapeutic gene.

The team has already tested the system in a number of different solid cancers, as well as in leukemia, to deliver different "payloads," but in this study, they looked at whether MSC engineered to carry interferon beta could treat mice that were implanted with human breast cancer or human melanoma. Interferon beta can inhibit cancer growth in laboratory tests, but is excessively toxic and short-lived when used at high doses as a therapy in patients, says Andreeff. The team tested whether MSC engineered to express an interferon beta gene could provide a sustained and targeted effect directly to cancer cells.

For each of the two cancer types, the researchers tested three groups of mice against each other: one was an untreated control group; another was injected with interferon beta daily under the skin for three weeks; and the third received three weekly doses of intravenous MSC engineered to express the interferon beta payload.

They found that the MSC cellular vehicles readily grafted themselves into the tumor stroma and proliferated. The cells also delivered its drug over a long period of time, significantly improving survival of the mice. Specifically, mice whose breast cancer was treated with MSC survived 60 days compared to 41 days in the mice injected with interferon beta, and 37 days in untreated mice. Mice with melanoma that were treated with MSC more than doubled their survival (73.5 days) compared with treated mice (32 days) and untreated mice (30 days). Andreeff says that use of interferon beta therapy in this study is less important than proof that the MSC strategy works. "The most important discovery here is that these cells are indeed homing into tumors and are capable of delivering an anticancer payload," he says. "Now we can work to test a number of different therapeutic payloads to see which works best."

He speculates that this new tactic in the war on cancer might work particularly well after patients are treated with radiation or chemotherapy, because those therapies damage cancer cells, which would then be in critical need of MSC. Andreeff hopes that this new homing strategy might offer a novel way to treat cancer that has spread. "This drug delivery system is attracted to cancer cells no matter what form they are in or where they are," he says.

Heather Sessions | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>