Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics testing saves health care dollars

01.11.2004


Genetic testing for disorders, especially in large families, can save the public health care system thousands of dollars in the long term, according to new research at the University of Alberta.

"Government is looking for cost-effectiveness in all forms of medicine, and we want to show that this form of testing is worthwhile," said Dr. Dawna Gilchrist, a specialist in adult medical genetics at the University of Alberta. A one-year clinical case study conducted by Gilchrist, and other researchers at the University of Alberta and the University of Calgary, shows that significant cost-savings were achieved while testing a large family for a rare cancer syndrome. The findings were published in this month’s issue of Clinical Genetics.
Dr. Gilchrist, said little data exists on paper to show that genetic testing is cost-efficient. "Through papers such as this, governments may be more inclined to increase funding for genetic services and testing." The case study helps document that genetic testing for mutations in well-characterized, dominant genes is cost-efficient because it either rules in or rules out carriers. The need for further clinical screening is eliminated in those without the mutation.


"Savings are realized when family members are proven not to be at risk for a disorder, and further genetic and clinical screening is unnecessary," said Dr. Gilchrist, lead author on the paper. "The savings can be appreciated both immediately and in the future. And, we’ve brought relief to the person worried about inheriting a disorder." In this particular case, two asymptomatic family members, found to have the mutation, were able to have prophylactic surgery to significantly decrease their risk of cancer in the future--also a potential savings in health care costs.

The cost analysis was done while testing a large family for multiple endocrine neoplasia type 2, a rare hereditary syndrome consisting of cancers of the thyroid and adrenals as well as abnormalities in calcium control. As a result of initial genetic testing, which involved analysing DNA from seven people, another 40 family members did not require further genetic testing. That resulted in one-time savings of $4,800.

Overall, 54 family members were eliminated from clinical screening, including MRIs, resulting in yearly savings of about $16,900 and additional savings every three years of $31,590. For every at-risk person identified as not carrying the family mutation, the annual savings in clinical surveillance costs amount to at least $508 per person, per year.

The study has positive connotations for families affected by other hereditary cancers such as the breast-ovary cancer syndrome, Dr. Gilchrist said. "The government wants to see anything that is saving us money. This is something that shows we are providing real value to our patients and the health care system."

Bev Betkowski | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>