Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mitochondria findings may help beat wide range of disease

13.10.2004


New findings explaining the complicated process by which the "energy substations" of human cells split apart and recombine may lay the groundwork for new treatment approaches to a wide range of diseases, including some cancers and neurodegenerative diseases such as Parkinson’s and Alzheimer’s.



Researchers from The Johns Hopkins University’s Integrated Imaging Center; the University of California, Davis; and the California Institute of Technology collaborated on two new studies analyzing the mechanisms and proteins that underlie the fission-fusion cycle of the cellular powerplants, called mitochondria. Their findings were published in two recent issues of the journal Science.

"To understand the role that mitochondria play in both normal and aberrant cell biology, it is essential to first understand the fusion-fission process that occurs continuously in normal, healthy cells," said J. Michael McCaffery, a research scientist in the Johns Hopkins Department of Biology, director of the Integrated Imaging Center, and an author on both studies.


Mitochondria constantly split and recombine and as cells divide, they pass along to each "daughter" cell the full complement of mitochondria necessary for healthy cell physiology. Recent research suggests that when this process goes awry, healthy cells die, resulting in diseases ranging from optic atrophy (the most common inherited form of blindness), to Charcot-Marie-Tooth disease (a disease in which nerves in the hands, feet and lower legs die off), to Parkinson’s and Alzheimer’s diseases (which arise from neurodegenerative cell death), and even to some types of cancer.

Until now, though, understanding of those diseases was greatly limited by a lack of knowledge about the mitochondrial fusion portion of the cycle. "Fusion of single membranes is a well-delineated process, involving well-known, well-studied proteins," McCaffery said. "However, the same cannot be said for mitochondrial fusion, in which the key sequence of events and facilitating proteins remain largely unknown."

The mitochondrial fusion process is challenging to understand because mitochondria are structurally very complex, double-membrane bound organelles. In order for separate mitochondria to fuse, two distinct, compositionally very different membranes must join. Understanding how mitochondria accomplish this while maintaining the integrity of their compartments and the appropriate segregation of membranes and proteins is a fundamental question that the researchers sought to answer.

McCaffery’s team helped tackle this question by studying isolated mitochondria that had been removed from cells, observing them in test tubes using both light and electron microscopy. This cell-free approach allowed researchers a first-ever glimpse into the sequence of events underlying outer and inner membrane fusion.

What they discovered -- that mitochondria removed from their host-cell environment were nonetheless able to fuse -- surprised them because it suggested that mitochondria contain within themselves all the proteins necessary for fusion. This stands in stark contrast to the process of single-membrane fusion, which requires many additional cellular proteins to carry out this important function.

"We observed two distinct stages, with the first involving outer membrane fusion yielding an intermediate structure of two conjoined mitochondria, followed by the subsequent fusion of the inner membranes giving rise to a single mitochondrion," McCaffery said. "Understanding the discrete molecular events that underlie dynamic mitochondrial behavior has the potential to reveal keen insights into the basic and essential cell-mitochondria relationship, leading to increased understanding of the aging process; and potential treatments and perhaps cures of those age-related scourges of Parkinson’s and Alzheimer’s."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>