Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Component of volcanic gas may have played a significant role in the origins of life on Earth

08.10.2004


Scientists at The Scripps Research Institute and the Salk Institute for Biological Studies are reporting a possible answer to a longstanding question in research on the origins of life on Earth--how did the first amino acids form the first peptides?


Peptides and proteins are strings of amino acid building blocks, and they are one of the most important classes of biological molecules found in living things today. Fifty years of chemical research on the origins of life has shown that amino acids could have formed spontaneously on the early Earth environment or could have been introduced onto the early Earth from meteorites.

"There are lots of ways to make amino acids," says Professor M. Reza Ghadiri, Ph.D., who is a member of The Skaggs Institute for Chemical Biology at Scripps Research. "But the question is, how do you couple them together?"

Ghadiri and Luke Leman, who is a member of the Kellogg School of Science and Technology at Scripps Research, worked out one possible solution with Leslie Orgel of the Salk Institute. In the latest issue of the journal Science, Leman, Ghadiri, and Orgel suggest that the missing link is a chemical component of volcanic gas known as carbonyl sulfide.



Carbonyl sulfide is present in volcanic gasses and deep sea vent emissions today, and since these geological phenomena were prominent features on the early Earth, it is reasonable to assume that the gas was present.

In their report, the scientists demonstrate that the gas can bring about a vigorous chemical reaction that forms peptides under mild aqueous conditions. Within a few minutes of introducing the gas to a reaction vessel containing amino acids, they observed high yields of di-, tri-, and tetra-peptides. They carried out the reaction in the presence of air, without air, and with and without other ingredients like metal ions, and they found peptides formed readily under all these conditions. "It’s really efficient, actually," says Ghadiri. "This addresses a very important question that we did not have a real good answer for."

Life--What We Know, and What We Don’t

The question of how life originated is one of the most interesting gaps in our knowledge--interesting perhaps because we know approximately when it occurred, but we do not know how it occurred.

The earliest fossils scientists have found are stromatolites--large clumps of cyanobacteria that grew in abundance in the ancient world over 3.5 billion years ago in what is now western Australia. These most likely evolved from some simpler life forms because, like all modern life, cyanobacteria are highly sophisticated living organisms--with cell walls, complex metabolism, and DNA genes. The question of the origins of life is: what came before the stromatolites?

Research on the origins of life has suggested the notion of an ancient RNA world--one in which RNA genes stored genetic information (something done by DNA today), carried out the chemistry necessary for life, and formed the essential physical structures of life (something done primarily by proteins today).

But how did that RNA world come about?

"Anybody who thinks they know the solution to this problem [of the origin of life] is deluded," says Orgel. "But," he adds, "anybody who thinks this is an insoluble problem is also deluded."

One possible approach to the problem of life’s origins is to ask the question scientifically rather than historically-- how can life emerge rather than how did life emerge. In order to address this, scientists try to determine experimentally what is chemically feasible and what could have occurred on the prebiotic earth.

One possibility, which was suggested in the 1920s by the Russian scientist A.I. Oparin, is that life emerged in its most primitive forms from minerals, metals, and the elements carbon, hydrogen, oxygen, and nitrogen, which were combined into amino acids, nucleotides, and the other the building blocks of life under the violent energy of lightning, solar radiation, comet impacts, and volcanic events that were present.

In 1953, this theory was given a boost when a paper was published in Science by Stanley L. Miller, who is Professor Emeritus at the University of California, San Diego. In the paper, Miller described an experiment he devised with Harold C. Urey--now called the Miller and Urey experiment--that gave experimental underpinnings to Oparin’s ideas.

In the experiment, Miller boiled H2O, CH4,H2, and NH3 gases in a glass apparatus containing a pair of tungsten electrodes. He subjected the chemicals to an electric discharge, intended to simulate conditions on the early Earth, and he collected and analyzed the molecules that formed--which included the amino acids alanine, glycine, and a few others. In the years since, several other investigators have expanded on the Miller–Urey experiment to demonstrate the formation and chemistry of many of the common biological amino acids, sugars, and nucleotides. Orgel, who is a long-time investigator in the field, has done pioneering research on the prebiotic chemistry of nucleotides.

This latest study is an advance because previous attempts to demonstrate the formation of peptides on early Earth depended on reaction schemes that were less plausible or were not as efficient. Next, the team plans to examine carbonyl sulfide’s reactive properties further and see if the gas can bring about other chemical reactions that are relevant to prebiotic chemistry.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>