Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA lends scientists a hand, revealing new chemical reactions

30.09.2004


Technique could ease discovery of countless reactions by linking organic fragments to DNA strands



Scientists have developed a powerful way of mining the chemical universe for new reactions by piggybacking collections of different small organic molecules onto short strands of DNA, which then gives the reactants the opportunity to react by zipping together. Their work draws upon an innovative technique, known as "DNA-templated synthesis," that uses DNA to code not for RNA or proteins but instead for synthetic molecules.

The researchers, led by Harvard University chemist David R. Liu, report this week in the journal Nature that their system for reaction discovery, driven by DNA-templated synthesis, is so efficient that a single researcher can evaluate thousands of potential chemical reactions in a two-day experiment. "A conventional approach to reaction discovery, in which different reaction conditions are examined for their ability to transform one type of substrates into one type of product, may well be the best approach for trying to achieve a specific transformation," says Liu, an associate professor of chemistry and chemical biology in Harvard’s Faculty of Arts and Sciences. "But no one knows what fraction of ’reactivity space’ has been mined thus far, or even what this space looks like. We were therefore intrigued by a different approach to reaction discovery that does not focus on any specific combination of substrates but instead can simultaneously examine many combinations."


DNA-templated synthesis, pioneered in Liu’s group, taps the unique assembly power of nucleic acids to address fundamental challenges in chemistry. Organic molecules are attached to, and "encoded" by, single strands of approximately a dozen DNA bases; when two strands with complementary sequences spontaneously stick together, their associated organic molecules can undergo a chemical reaction to generate a product.

Because the resulting synthetic compounds are linked to DNA, techniques long used to screen and amplify the genetic mainstay can be applied. In the current work, the scientists coupled DNA-templated synthesis with in vitro selection and DNA microarray analysis to scan for pairs of reactants that are able to undergo chemical reaction under a chosen set of reaction conditions.

Liu’s team first applied DNA-templated synthesis to the creation of new synthetic molecules; now, shifting their focus a bit, they’re using the technique to reveal as-yet undiscovered chemical reactions. DNA’s inherent sequence selectivity –- binding only to other strands with a complementary sequence -– means that DNA-templated synthesis can be used to evaluate hundreds of potential chemical reactions simultaneously, in a single solution.

"We had assumed that DNA-templated synthesis might make possible rapid discovery of potentially useful reactions and were encouraged to find, early on, an unexpected reaction that efficiently coupled two simple hydrocarbons, a terminal alkyne and a terminal alkene, to form a useful and more complex group called a trans-enone," Liu says. "We’ve also been excited by the fact that this reaction not only works in the DNA-templated format in which it was discovered, but also in a conventional flask-based chemistry format."

Chemical synthesis occurs very differently in laboratories and in cells. Chemists typically work with molecules that react to form products when they randomly collide at high concentrations. By contrast, biomolecules are found within cells at concentrations that are often a million times lower than the concentrations of molecules in laboratory reactors. In nature, the reactions between these highly dilute molecules are directed by enzymes that selectively bring certain biological reactants together. Liu and his colleagues use DNA as a similar type of intermediary to bring together synthetic small molecules that are otherwise too dilute to react, allowing minute quantities of sparse molecules to behave as denser mixtures when assembled together by DNA base pairing.

Liu’s co-authors are Matthew W. Kanan, Mary M. Rozenman, Kaori Sakurai, and Thomas M. Snyder, all of Harvard’s Department of Chemistry and Chemical Biology. The work was supported by the National Institutes of Health, the Office of Naval Research, and the Arnold and Mabel Beckman Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>