Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New malaria vector species discovered in Africa

16.09.2004


Malaria affects around 600 million people in the world and leads to an annual death toll of over 2 million. It is the world’s most widespread parasitic disease. It is caused by Plasmodium falciparum, a pathogen transmitted to humans by a mosquito. In Africa, where malaria is endemic, mosquitoes of the Anopheles genus are the only vectors of the disease. The many studies which have been devoted to them have led to the characterization of different species and the identification, among these, of vector species. To date, four groups of vectors of the genus Anopheles have been recorded on the African continent: Anopheles gambiae, A. funestus, A. nili and A. moucheti, each comprising a set of species, morphologically very similar although genetically different.

As part of the PAL+ programme, initiated by the Ministry of Research in 1999, IRD and OCEAC (Organisation de Coordination pour la lutte contre les endémies en Afrique Centrale) scientists in southern Cameroon studied the morphology and genetics of mosquitoes of this genus. They focused especially on the Anopheles nili group, with a geographical distribution that mainly covers Central Africa.

Investigations on larvae and adults collected along the banks of the River Ntem, in the South of Cameroon, found evidence of morphological variations between specimens, making it difficult to classify them within one of the three known species of the A. nili(2) group. This observation suggests the existence of a new variant called "Oveng form", from the name of the village where it was collected. Molecular biology techniques provided genetic confirmation of the differences observed and raised the "Oveng form" to the rank of species, with the name A. ovengensis. The discovery of the parasite P. falciparum in this new species shows that it is a new vector of malaria. A more detailed study under way should shed more light on its role in transmission of the disease.



This identification method, which combines taxonomy and genetics, was also applied, by the same team, to the study of another group of the Anopheles genus, A. funestus(3), in Cameroon. The researchers have thus found evidence of a new species, close to A. rivulorum, which is one of the nine already described within this group. As no presence of the parasite P. falciparum was detected, this new species, termed A. rivulorum-like, is not considered to be a vector. Research is currently continuing in order to provide more detailed information on the biology and geographical distribution of this new species.

These results emphasize the important place of taxonomy for studying malaria vectors. The knowledge acquired on these vectors will help understand better the epidemiology of the disease. The characterization and geographical distribution of each mosquito vector, the latter’s infestation rate and the mechanisms it deploys in transmission of the parasite to humans lead to improvements in anti-vector campaigns and hence to more effective prevention and control strategies. Similar studies are already under way in other regions of Africa with the long-term aim of establishing a comprehensive database that will hold information on the Anopheles vectors of malaria. Constance BOUTROLLE - IRD

(1) A group of species is defined as a set of species that are morphologically very similar yet genetically different.
(2) A.nili s.s and its variant termed "Congo form", A. somalicus and A.carnevalei.
(3) For further information on Anopheles funestus, consult scientific information sheet 110 of March 2000. http://www.ird.fr/fr/actualites/fiches/2000/fiche110.htm

Marie Guillaume | alfa
Further information:
http://www.paris.ird.fr
http://www.ird.fr/fr/actualites/fiches/2000/fiche110.htm

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>