Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find way to clean up the drugs market

13.09.2004


Researchers from the University of Cambridge and the Massachusetts Institute of Technology have made a breakthrough by using supercritical carbon dioxide (scCO2) as a reaction medium for the preparation of molecules of interest to the pharmaceutical industry.

Many industries throughout the world have begun using the non-toxic, environmentally friendly scCO2 as a solvent, replacing harsher volatile organic solvents, such as chlorinated hydrocarbons and chlorofluorocarbons. Until now it was not considered possible to make certain classes of molecules in CO2 because it was thought that they would react with the CO2.

Cambridge University’s Professor Andrew Holmes, Director of the Melville Laboratory, together with MIT’s Professors Rick Danheiser and Jefferson Tester, have changed all that by figuring out how to use scCO2 for reactions without it reacting with the reagents.



Since the 1990s, scCO2 has emerged as an environmentally benign substitute for more conventional solvents used for organic synthesis, such as those that enter the atmosphere from sprays and similar products. Dry cleaners, plastics manufacturers, food producers and various industries involved in the extraction of flavours and fragrances are already using the ‘benign’ solvent, resulting in more environmentally friendly industrial practices. Using scCO2 as the extractive agent to remove caffeine selectively and leave the flavour of fresh coffee, for example, produces decaffeinated coffee beans.

Although a greenhouse gas, scCO2 can be obtained in large quantities as a by-product of fermentation and combustion. The ready availability, coupled with its ease of removal and recycling, makes scCO2 an exciting prospect for synthetic and industrial applications.
Supercritical carbon dioxide is a supercritical fluid, so called because it is taken beyond its critical temperature, to a point where it’s neither a liquid nor a gas but retains both liquid-like solvent properties and gas-like densities.

Pharmaceutical companies have begun using scCO2 for processing drugs into powder consistently, but the researchers’ findings may soon mean that the entire manufacturing process can be integrated, using scCO2 for both synthesis and processing them into powders.

Organic solvents can always react in undesired ways, so an advantage to using this non-toxic supercritical fluid is that it reduces the chances for alternative and less-desired outcomes.

Another major advantage to using supercritical fluids for organic synthesis is the ability of these physical properties to be tuned simply by a change in pressure and/or temperature.

Professor Holmes dreams of helping the pharmaceutical industry streamline the drugs manufacturing process with the techniques he and his team have developed. “We’re making molecules of interest to pharmaceutical companies — aromatic amines — which are a key fragment in many neurological drugs. Before it was considered impossible, but we’ve got preparations of aromatic amine reactions to work in supercritical carbon dioxide.”

A patent has been filed on behalf of the work done at Cambridge and MIT, which was funded by the Cambridge-MIT Institute (CMI). The researchers have published their findings in Chemical Communications, (The Royal Society of Chemistry) 2004.

In addition to the collaboration with MIT, the CMI project has enabled scientists at Cambridge to work closely with Professor Gerry Lawless and his team at the University of Sussex.

Pharmaceutical giant AstraZeneca is one of a number of companies that has long been interested and supportive of Professor Holmes’ work in scCO2.

Tracy Moran | alfa
Further information:
http://www.cambridge-mit.org

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>