Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed light on the mystery of photosynthesis

26.08.2004


Scientists at the University of Sheffield are part of an international team that has become the first to successfully discover how the component parts of photosynthesis fit together within the cell membrane. In a paper, The native architecture of a photosynthetic membrane, published in Nature on 26 August 2004, they describe how the configuration of the three structures that allow photosynthesis to occur fit together, and find that Mother Nature has developed a much more complex and effective system than was previously thought.

Photosynthesis is the reaction that allows plants and bacteria to take in sunlight and convert it into chemical energy, by reducing carbon dioxide and water into carbohydrates and oxygen. Photosynthesis is the backbone of life on Earth – all the food we eat, the oxygen we breathe and the fossil fuel we burn are products of this reaction.

Professor Neil Hunter from the University of Sheffield explains, “Photosynthesis is the single most important chemical reaction on Earth and it is fascinating to see for the first time how nature has overcome the problem of harvesting and utilising solar energy.



“Although scientists have known the structures of the individual components involved in photosynthesis for some time, this is the first time we have managed to see how they all fit together and work as a system. To achieve this we have used an Atomic Force Microscope, which ‘feels’ the shape of individual molecules and converts this into a picture, to see the system within an individual cell membrane. We have discovered Nature’s way of collecting light for photosynthesis.

“We already knew that during photosynthesis light is collected by an antenna made up of two light harvesting complexes – LH1 and LH2, and then passed to a reaction centre (RC) where it is converted into chemical energy. However, these were like individual jigsaw pieces and we had yet to see the full picture.

“The way photosynthesis works is that groups of LH2 complexes pick up the light, and pass them it around among themselves until the light comes across an LH2 complex which is touching one of the larger LH1 complexes. The energy then circulates around the LH1 complex, or passes to another LH1, until it moves on to the reaction centre.

“We found that the LH2 complexes are structured in an antenna-like shape and when light is scarce they co-operate by joining together to allow them to make the best possible use of the limited light available.

“The LH1 complexes are each attached to their own RC and from looking at the images we believe that if an LH1 takes in light whilst its reaction centre is ‘busy’ then it will keep passing the energy on to neighbouring LH1 complexes, until an unoccupied reaction centre is found.

“We hope to test this particular theory further but the purpose of both of these systems would be to maximise the efficiency of photosynthesis. The process of harvesting light energy is over 95% efficient, which is an incredible figure.

“This work doesn’t only have implications for our understanding of photosynthesis, but also for the future of molecular science. By looking at the world on an individual molecular level scientists have the opportunity to learn more about an incredible number of biological systems and processes.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Innovative Infrared heat reduces energy consumption in coating packaging for food

12.12.2018 | Trade Fair News

New Foldable Drone Flies through Narrow Holes in Rescue Missions

12.12.2018 | Information Technology

Obtaining polyester from plant oil

12.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>