Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed light on the mystery of photosynthesis

26.08.2004


Scientists at the University of Sheffield are part of an international team that has become the first to successfully discover how the component parts of photosynthesis fit together within the cell membrane. In a paper, The native architecture of a photosynthetic membrane, published in Nature on 26 August 2004, they describe how the configuration of the three structures that allow photosynthesis to occur fit together, and find that Mother Nature has developed a much more complex and effective system than was previously thought.

Photosynthesis is the reaction that allows plants and bacteria to take in sunlight and convert it into chemical energy, by reducing carbon dioxide and water into carbohydrates and oxygen. Photosynthesis is the backbone of life on Earth – all the food we eat, the oxygen we breathe and the fossil fuel we burn are products of this reaction.

Professor Neil Hunter from the University of Sheffield explains, “Photosynthesis is the single most important chemical reaction on Earth and it is fascinating to see for the first time how nature has overcome the problem of harvesting and utilising solar energy.



“Although scientists have known the structures of the individual components involved in photosynthesis for some time, this is the first time we have managed to see how they all fit together and work as a system. To achieve this we have used an Atomic Force Microscope, which ‘feels’ the shape of individual molecules and converts this into a picture, to see the system within an individual cell membrane. We have discovered Nature’s way of collecting light for photosynthesis.

“We already knew that during photosynthesis light is collected by an antenna made up of two light harvesting complexes – LH1 and LH2, and then passed to a reaction centre (RC) where it is converted into chemical energy. However, these were like individual jigsaw pieces and we had yet to see the full picture.

“The way photosynthesis works is that groups of LH2 complexes pick up the light, and pass them it around among themselves until the light comes across an LH2 complex which is touching one of the larger LH1 complexes. The energy then circulates around the LH1 complex, or passes to another LH1, until it moves on to the reaction centre.

“We found that the LH2 complexes are structured in an antenna-like shape and when light is scarce they co-operate by joining together to allow them to make the best possible use of the limited light available.

“The LH1 complexes are each attached to their own RC and from looking at the images we believe that if an LH1 takes in light whilst its reaction centre is ‘busy’ then it will keep passing the energy on to neighbouring LH1 complexes, until an unoccupied reaction centre is found.

“We hope to test this particular theory further but the purpose of both of these systems would be to maximise the efficiency of photosynthesis. The process of harvesting light energy is over 95% efficient, which is an incredible figure.

“This work doesn’t only have implications for our understanding of photosynthesis, but also for the future of molecular science. By looking at the world on an individual molecular level scientists have the opportunity to learn more about an incredible number of biological systems and processes.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>