Nerve cells ’guided’ to repair spinal damage: Technique

May lead to treatment for severed spinal cords

University of Toronto researchers have designed a method to facilitate nerve cell repair that could ultimately lead to treating severed spinal cords.

The technique, outlined in the July 6 online version of Biomaterials, involves imbedding a series of fibrous rods into a gel substance and then dissolving the rods, leaving a series of longitudinal channels. These channels are then injected with peptides, molecules that stimulate cell adhesion and migration. “When nerve cells are placed at the opening of the channel, the peptides act like breadcrumbs to follow,” says Molly Shoichet, lead author and professor of chemical engineering and applied chemistry at U of T’s Institute for Biomaterials and Biomedical Engineering (IBBME).

According to Shoichet, the technique is part of an overall strategy to repair spinal cord injuries where the spine is cut in two. After joining the ends of the severed spine with a tube, researchers would then fill this tube with the gel channels and peptides to stimulate nerve cell growth and bridge the gap between the two ends. “We need cells to grow in a specific direction to minimize that distance, thereby reducing the time for regeneration,” says Shoichet, who holds the Canada Research Chair in Tissue Engineering. “A longitudinal channel – a straight line – is the minimum distance between two points.”

The research, which has yet to be tested in animal models or humans, was funded by the Natural Sciences and Engineering Research Council of Canada and an Ontario Graduate Scholarship in Science and Technology.

Media Contact

Karen Kelly EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors