Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse brain stem cells capable of converting into blood vessel cells

15.07.2004


Adult stem cells in the brains of mice possess a broader differentiation potential than previously thought and may be capable of developing into other cell types including those involved in the formation of new blood vessels, according to a new study supported by the National Institute on Aging (NIA), a part of the National Institutes of Health. The finding could help resolve a critical question about these promising, but still mystifying cells. The report by Fred H. Gage, Ph.D., and colleagues at the Salk Institute in La Jolla, CA, and Kumamoto University in Japan, appears in the July 15, 2004, issue of Nature.

Adult stem cells in the brain were proposed to be restricted to the generation of neurons and cells, such as glial cells, that support neuron function. Experiments over the past several years have raised the possibility that stem cells from the brain may be able to give rise to additional cell types, a phenomenon known as plasticity. But recent findings have challenged this theory, suggesting that many of these stem cells merely merge or "fuse" with an existing cell within a tissue forming a hybrid that takes on the pre-existing cell’s functions.

"Resolving this issue is important because fused cells may have a different therapeutic potential than stem cells that differentiate into new cells, says Bradley C. Wise, Ph.D., of the NIA’s Neuroscience and Neuropsychology of Aging Program. "While this new finding doesn’t fully answer this vital question, it keeps open the possibility that adult stem cells from different organs one day may be harnessed to help prevent and treat neurological disorders."



In their experiments, Gage and his colleagues grew mouse brain stem cells, which form neurons and glial cells, in the same culture dishes with human endothelial cells, which form the lining of blood vessels. Over time, about 6 percent of the mouse neural stem cells began to show signs that they had developed into cells similar to endothelial cells. The new cells expressed CD146, Flk-1 and VE Cadherin, protein markers that are associated with endothelial cells. They also retained a single nucleus and had only mouse chromosomes, suggesting they had converted into a different type of cell rather than merged with an existing human endothelial cell. Similar results were seen when these same neural stem cells were transplanted into the brains of mice early in development.

| EurekAlert!
Further information:
http://www.nia.nih.gov

More articles from Life Sciences:

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

nachricht Scientists construct energy production unit for a synthetic cell
18.09.2019 | University of Groningen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Turbine from the 3D printer

18.09.2019 | Materials Sciences

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>