Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC research accelerates discovery of novel gene function

07.07.2004


University of North Carolina at Chapel Hill researchers have developed a new technique for rapidly identifying the functions of genes.

The "high throughput" technique can be used in both cell culture and in animal models to screen thousands of genes for a particular biological function. It provides a method for the rapid development of a cDNA library, which would contain protein-encoding sequences of DNA. Researchers then can use the library to analyze a specific gene function.

The report appears in the July issue of Molecular Therapy, the American Society of Gene Therapy’s journal.



"All the genes in the human genome have now been sequenced, but the problem is that we don’t know their function," said Dr. Tal Kafri, principal investigator of the study and an assistant professor of microbiology and immunology at UNC’s School of Medicine. He also is a member of the UNC Gene Therapy Center.

The study helps to resolve two bottlenecks in determining gene functions, he said.

"It offers a quick and efficient way to transfer cDNA into a viral vector library, and it also helps isolate altered cells, ensuring that the changes in them are due to the introduced gene. The closed system we have developed allows us to take candidate genes from virus to bacteria to cell to animal, quickly and efficiently."

The technique system may have clinical applications, including drug design, Kafri added. "We could easily modify the library to find peptides or small molecules with potential to act as inhibitors for a particular cellular state or pathway. Doing so would drastically accelerate the process of high-throughput drug design and testing, taking gene candidates from cell culture to the animal model."

The technique uses a genetically engineered HIV-1 virus, in which genes can be shuttled among bacteria, cell culture or animal models, in the same vehicle, or vector. This avoids time-consuming methods involved in gene isolation and amplification, such as the polymerase chain reaction, or PCR, procedure.

The method, designed by Kafri and gene therapy center researcher Hong Ma, enables scientists to rapidly screen cells for changes in a particular phenotype. They can easily isolate and identify the gene causing the changes and place it into an animal model or bacteria for further study.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>