Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Discover That Nerve Activity, Not Just Genetics Controls Kinds Of Neurotransmitters Produced

03.06.2004


Photo shows different neurotransmitters in red and purple in normal frog embryos and embryos with decreased and increased nerve activity (from top to bottom) Photo credit: Laura N. Borodinsky, UCSD


Neurobiologists at the University of California, San Diego have discovered that altering electrical activity in nerve cells can change the chemical messengers the cells generate to communicate with other cells, a finding that may one day lead to new treatments for mood and learning disorders.

In a study published in the June 3rd issue of the journal Nature, a team led by UCSD professor of biology Nicholas Spitzer shows that manipulating the electrical activity of developing nerve cells can alter the type of neurotransmitter—chemicals that carry information between nerve cells at junctions called “synapses”—they produce. A review paper discussing these results will appear in July in Trends in Neurosciences. The results are important because scientists had long believed that the different kinds of neurotransmitters used by different nerve cells were genetically programmed into the cell.

"If you were to ask neuroscientists what learning is in cellular and molecular terms, none would have said it is the changing identity of neurotransmitters,” says Spitzer. “That would have been heresy because everyone thought neurotransmitter identity was genetically programmed. Our results show that by altering neural activity, you can change the identity of the neurotransmitter a particular cell produces, raising the possibility that disorders caused by problems with neurotransmitters could be treated by modifying neural activity.”



In the study, the UCSD group increased or decreased the electrical activity in frog embryonic spinal nerve cells by altering the current through nerve cell membranes with drugs or by genetic manipulation. They found that increases in activity increased the levels of neurotransmitters that inhibit the activity of nerve cells across the synapse and decreased the levels of neurotransmitters that stimulate nerve cells. Decreasing electrical activity had the opposite effect.

These results led the researchers to propose that while genes control the formation of structures that produce electrical activity in nerve cells, the activity itself can determine what neurotransmitters are produced. According to Spitzer, this could provide flexibility for the growth and operation of the nervous system.

“Biology is a little sloppy,” explains Spitzer. “A nerve cell may need to grow to the other side of the developing brain and form a synapse there. Genes can do a lot to specify where to grow, but precision is not absolute. So instead of genes specifying everything, activity can play a role by fine tuning what neurotransmitters are expressed when the nerve cell finds its target.”

It is not yet clear how activity affects neurotransmitters in the adult nervous system, but Spitzer thinks there is a good chance activity will play a similar role there as well.

“Often the processes we see in the embryonic nervous system we also see in the adult, albeit in a much more muted way,” he says.

If so, these findings could open new avenues for treating mental illnesses like depression, phobias, schizophrenia and bipolar disorder, which together affect 20 percent of the U.S. population each year, with estimated cost of treatment and lost productivity totaling approximately $150 billion, according to the U.S. Surgeon General.

“Focal stimulation of the brain to elicit changes in neurotransmitter production could have advantages over current drug treatments and electroconvulsive therapy—stimulation of the whole brain with electric current,” notes Spitzer. “These treatments work for many patients, but both treat the entire brain in an imprecise way and have side effects.”

The first author on the paper, Laura Borodinsky, a postdoctoral fellow in Spitzer’s laboratory, is now studying how the cells across the synapse receiving the neurotransmitter change in response to being exposed to a different neurotransmitter. Using changes in activity to treat neural disorders would depend on the ability of these cells to respond appropriately to the new neurotransmitter. Further research is also needed, the UCSD scientists say, to determine if the 50 to 100 other known neurotransmitters are also regulated by activity.

Other UCSD contributors to the publication were Cory Root, Julia Cronin, Sharon Sann and Xiaonan Gu. The study was supported by the National Institutes of Health, National Science Foundation and Merck.


Media Contact: Sherry Seethaler (858) 534-4656
Comment: Nicholas Spitzer (858) 534-2456

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/sactivity.asp

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>