Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover protein that dissolves amyloid fibers

21.05.2004


Amyloid fibers, those clumps of plaque-like proteins that clog up the brains of Alzheimer’s patients, have perplexed scientists with their robust structures. In laboratory experiments, they are able to withstand extreme heat and cold and powerful detergents that cripple most other proteins. The fibers are in fact so tough that researchers now are exploring ways that they can be used in nanoscale industrial applications. While they are not necessarily the cause of Alzheimer’s, they are associated with it and with many other neurological conditions, and researchers don’t yet have a way to assail these resilient molecules.



A study published this week in the advance online publication of the journal Science suggests that yeast may succeed where scientists have not. The research by a team at Whitehead Institute for Biomedical Research reports on a natural biological process by which yeast cells dismantle amyloid fibers.

"These proteins are remarkably stable," says Susan Lindquist, director of Whitehead and lead researcher on the project. "This is the first time that anyone has found anything that can catalytically take apart an amyloid fiber."


The finding follows years of study that has focused on a yeast protein called Sup35, a protein that helps cells translate genetic information into strings of amino acids – the building blocks of protein molecules. Sometimes Sup35 suddenly forms amyloid fibers similar to those found in Alzheimer’s patients. In yeast, however, this doesn’t kill the cell. Rather, it is part of the cell’s normal biology, changing the types of proteins that the cell makes – changes that can sometimes be beneficial.

Previous research in the Lindquist lab described how a protein called Hsp104 seemed to affect Sup35’s ability to form amyloid fibers. When a yeast cell contained either high amounts of Hsp104 or none at all, amyloid fibers never formed. But when Hsp104 levels were small, the fibers flourished.

While these types of relationships between chemicals aren’t unheard of, "it was counter-intuitive. Both high levels of Hsp104 and the absence of Hsp104 caused the same effect. That certainly made us want to figure out what was going on," says Lindquist, who is also a professor of biology at MIT. "It was hard to come up with a definitive experiment in a living cell that would explain this sort of thing."

In this new study, Lindquist and postdoctoral researcher James Shorter isolated Sup35 and Hsp104. Here they saw that small amounts of Hsp104 catalyzed the formation of amyloid fibers, but large levels of the protein actually caused the fibers to dissolve.

"Given their resilient structure, the fact that a protein can take apart these amyloids is remarkable," says Lindquist. "It has huge implications for our understanding of the protein folding process in amyloid-related conditions."

This research also may contribute to scientists’ understanding of evolution. Prions, those infectious proteins implicated in conditions such as mad cow disease, are a subclass of amyloids. In yeast cells, Sup35 technically is a prion, although it is not toxic to the cell. Many researchers suspect that because prions have been so well conserved in yeast for hundreds of thousands of years, they must serve some sort of evolutionary purpose – and that’s where Hsp104 comes in.

Hsp104 belongs to a class of proteins that sometimes are influenced by environmental factors. It is conceivable, Shorter explains, that a yeast cell in one type of environment can experience an abundance of Hsp104, which would then keep Sup35 from forming amyloid fibers in that cell. But put that cell in a different environment and the result may be a more moderate level of Hsp104 that would, in turn, create amyloid fibers in Sup35, changing how that protein functions and ultimately altering the cell’s biology. And because these changes could then be passed on to subsequent generations of cells, this, the scientists note, would be an example of environment guiding the evolutionary process.

"This is speculation that hasn’t been demonstrated yet," says Shorter. "For obvious reasons it’s hard to prove any evolutionary argument. But this paper is one indication that this might be the case."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Life Sciences:

nachricht Lab-free infection test could eliminate guesswork for doctors
26.02.2020 | University of Southampton

nachricht MOF co-catalyst allows selectivity of branched aldehydes of up to 90%
26.02.2020 | National Centre of Competence in Research (NCCR) MARVEL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists develop algorithm for researching evolution of species with WGD

26.02.2020 | Information Technology

MOF co-catalyst allows selectivity of branched aldehydes of up to 90%

26.02.2020 | Life Sciences

Structural framework for tumors also provides immune protection

26.02.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>