Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into how tumors resist radiation

18.05.2004


Scientists have uncovered new evidence about a critical cellular pathway that makes tumor blood vessels resistant to radiation therapy. The research, published in the May issue of Cancer Cell, may have significant clinical applications, as a better understanding of this mechanism may open new avenues for enhancing the effectiveness of radiation therapy.



Tumor growth and survival is completely dependant upon having an adequate blood supply. In fact, the sensitivity of a tumor’s blood vessels to radiation therapy is a major determinant of how successful the treatment will be. Recent studies have shown, however, that tumors can respond to radiation by secreting factors that promote the survival of blood vessel cells. Dr. Mark W. Dewhirst and colleagues from Duke University Medical Center have investigated the activation of this protective response and whether the process can be successfully inhibited, thereby maximizing the effectiveness of radiation therapy. The investigators focused on a molecule called hypoxia inducible factor-1 (HIF-1) that is known to stimulate the production of factors called cytokines that are related to tumor metabolism, growth, and blood vessel formation.

They found that HIF-1 levels were increased in tumors after radiation treatment, and that HIF-1-regulated cytokines decreased the sensitivity of blood vessels to radiation. Based on this knowledge, the investigators demonstrated that administration of low doses of a HIF-1 inhibitor in tumor-bearing mice dramatically enhanced the effectiveness of radiation therapy by destroying tumor blood vessels without having an impact on normal vessels.


These results indicate that HIF-1 acts as a major factor directing resistance of tumor vasculature to radiation therapy. According to Dr. Dewhirst, "We believe that by understanding how this protective response is activated, we can discover an effective means of inhibiting it.

This work takes a major step toward achieving this understanding and might eventually translate into a significant clinical benefit by allowing optimal sensitization of tumor vasculature to conventional therapies including radiation."


Benjamin J. Moeller, Yiting Cao, Chuan Y. Li, and Mark W. Dewhirst: "Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules"

Published in Cancer Cell, Volume 5, Number 5, May 2004, pages 429-441.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>